Descrizione del progetto
Migliorare la comprensione dell’intelligenza emotiva
L’intelligenza emotiva è la capacità di comprendere e gestire le proprie emozioni e quelle delle persone attorno a sé. Il progetto TAMED, finanziato dall’UE, intende creare nuovi metodi e algoritmi per rappresentare aspetti dell’intelligenza emotiva generale, uno dei principali obiettivi a lungo termine dell’intelligenza artificiale e della psicologia artificiale. TAMED è altamente innovativo, perché usa per la prima volta modelli di apprendimento basati su tensori e la preferenza al fine di acquisire aspetti generali legati all’affetto. I metodi sviluppati nel corso del progetto aiuteranno a comprendere il grado in cui sono possibili modelli affettivi privi di contesto, consolidando la ricerca in Europa e oltre.
Obiettivo
The main objective of the TAMED project is to devise new methods and algorithms for realising aspects of general emotional intelligence, one of the core long-term goals of artificial intelligence and artificial psychology. To move towards such an ambitious goal TAMED methods would be required to: a) derive accurate models from small-sized affect data corpora, b) eliminate the subjective biases inherent in affective ground truth, and c) limit overfitting effects of affect models given their context-specific nature. TAMED views general affect modelling from an ordinal perspective and interweaves uniquely novel tensor-based learning models with preference learning approaches. TAMED is highly innovative since it utilises, for the first time, tensor-based and preference (deep) learning models to capture general aspects of affect. Tensor models are characterised by high learning and generalization capacity, and are suitable across different learning paradigms, while preference learning can uniquely eliminate annotation biases and approximate more reliably the underlying ground truth of affect. TAMED methods will be used to investigate the degree to which context-free affect models are possible and general affect patterns can be captured across dissimilar tasks and users. The applicability of the derived models will be tested on the domain of digital games since they offer complex yet well-defined problems for exploring the capacities of general artificial intelligence. The aforementioned innovative aspects make TAMED highly interdisciplinary, with research activities spanning from affective computing and machine learning to digital game design and development. The fellowship will contribute to the researcher’s career development through the acquisition of advanced scientific and technical skills, as well as developing skills within academia and industry. The project will also serve to consolidate and extend the researcher's professional network within Europe and beyond.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- scienze socialipsicologia
- scienze naturaliinformatica e scienze dell'informazioneintelligenza artificialeapprendimento automatico
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF-EF-ST - Standard EFCoordinatore
MSD 2080 MSIDA
Malta