Skip to main content

Aerodynamic and aeroacoustic modeling of closely operating propellers for DIStributed PROPulsion

Objective

DISPROP aims at improving the current aerodynamic and aeroacoustic analysis and design capabilities for large aircraft operating with distributed propulsion (DP) and propeller arrays. This will be done by generating a high-quality, industry-relevant experimental database using 2D and 2.5D wing sections equipped with propeller arrays. Using this database, the capability of existing CFD and CAA codes will be updated in order to better predict the relevant aerodynamic and aeroacoustic interaction phenomena occurring between the wing and the propellers slipstream. Parametric studies will be conducted to identify most promising configurations.
This 30-months 2,7M valued project will consist of four phases. After a preparatory phase, where relevant geometries will be selected based on their high potential for DP, two to three wing geometries will be highly parametrized in Phase 1 and investigated by both CFD and medium-scale wind tunnel tests (WTT). Then, in Phase 2, the most promising configuration will be wind-tunnel tested in large scale at DNW NWB to generate aerodynamic and aeroacoustic experimental database that will be used to validate CFD and CAA simulations. In a subsequent exploitation phase, the combined numerical and experimental database will be extrapolated to full-scale 3D geometries based on the advanced Power Balance Method.
The analysis and design tools matured and validated within DISPROP will enable the development of new aircraft configurations with DP and closely integrated propellers. Operating with a drastic increase in overall efficiency compared to conventional aircraft, such configurations contribute to the CS2 objective of reduced CO2 emissions.
The DISPROP consortium is composed of internationally recognized experts in CFD and CAA modeling, academic and industrial-scale WTT (the best facility in Europe for aerodynamic and aeroacoustic aircraft validation), as well as aircraft designers experienced in DP.

Call for proposal

H2020-CS2-CFP11-2020-01
See other projects for this call

Funding Scheme

CS2-RIA - Research and Innovation action

Coordinator

TECHNISCHE UNIVERSITAT BERLIN
Address
Strasse Des 17 Juni 135
10623 Berlin
Germany
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 510 125

Participants (4)

STICHTING DUITS-NEDERLANDSE WINDTUNNELS
Netherlands
EU contribution
€ 500 235
Address
Voorsterweg 31
8316 PR Marknesse
Activity type
Research Organisations
TECHNISCHE UNIVERSITAET BRAUNSCHWEIG
Germany
EU contribution
€ 972 687,50
Address
Universitaetsplatz 2
38106 Braunschweig
Activity type
Higher or Secondary Education Establishments
UNIVERSITY OF STUTTGART
Germany
EU contribution
€ 668 155
Address
Keplerstrasse 7
70174 Stuttgart
Activity type
Higher or Secondary Education Establishments
LEICHTWERK AG
Germany
EU contribution
€ 87 587,50
Address
Hermann-blenk-strasse 38
38108 Braunschweig
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)