Skip to main content


Project description

An innovative hydrogen fuel tank is energising the electric vehicle market

Transportation is one of the main contributors to emissions and human activity-related climate change. Fuel cell electric vehicles (FCEVs) could make an important contribution to the transition to cleaner forms of energy. Unlike other electric vehicles that rely on batteries that must be charged somehow, FCEVs use hydrogen to make their own electricity. Taking hydrogen from a storage tank and oxygen from the air, they produce water, heat and electricity. The EU-funded SH2APED project will develop and test an innovative flat hydrogen storage system for consumer vehicles with substantially enhanced safety and performance at a reduced price. It could help electrify the FCEV market, literally and metaphorically.


The goal of the SH2APED project is to develop and test at TRL4 a conformable and cost-effective hydrogen 70 MPa storage system with increased efficiency and unprecedented safety performance.
The innovative storage system is composed of the assembly of 9 tubular vessels fitting into a design space of 1800x1300x140 mm used for the battery pack. Fire resistance and mechanical robustness are drastically improved while the cost is decreased by 20% compared to the state-of-the-art Type IV tanks. This architecture allows a modular system configuration fitting into the flat space of light-duty car underbodies. All the vessel and the system elements are being manufactured using know-hows and high-throughput processes. Performance parameters and KPIs are monitoring in compliance with the current regulations, codes and standards (RCS) aiming the update of RCS by new knowledge and technological breakthroughs and simplification of certification. Economic assessment for industrial mass manufacturing is in line with the expectations of the automotive industry.
The SH2APED consortium is a strong partnership of two industrials, one federal institute and one university. Optimum CPV - Plastic Omnium is the leader in hydrogen vessels fabrication for the automotive industry. Misal Srl is the highly skilled on mechanical components machining. BAM is the expert on safety and reliability of high-pressure composite cylinders. Ulster University is one of key providers of hydrogen safety research globally.
In addition, a vital contribution to the project is expected from the Advisory Board comprising vehicle manufacturers including Daimler, Toyota, Audi, Geely, FIA, GreenGT. They will advise the project on the SH2APED system integration in light-duty fuel cell vehicles and validate the project results. The project testing capabilities are reinforced by the unique facilities and experts in performance evaluation of hydrogen tanks from the Joint Research Centre of the European Commission.


Net EU contribution
€ 438 750,00
Rue de la fusee 98 100
1130 Bruxelles

See on map

Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest Région de Bruxelles-Capitale/ Brussels Hoofdstedelijk Gewest Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Other funding
€ 0,00

Participants (4)