Periodic Reporting for period 2 - ONEM (Optical Near-field Electron Microscopy)
Berichtszeitraum: 2022-01-01 bis 2023-06-30
This is achieved via a unique combination of light and electron optics: First, the specimen is illuminated with light, which is non-invasive. Very close to the sample, the resulting optical fields are converted into an electron beam using the photo-electric effect. Since the local beam current is proportional to the local light intensity, imaging the electrons yields information about the sample under study.
Our consortium sets out to build the world’s first ONEM. We aim at proof-of principle demonstrations of our new technology in electrochemistry, plasmonics, and membrane biology. A more detailed description of ONEM can be found in the following publication:
Raphaël Marchand, Radek Šachl, Martin Kalbáč, Martin Hof, Rudolf Tromp, Mariana Amaro, Sense J. van der Molen, and Thomas Juffmann, Optical Near-Field Electron Microscopy, Phys. Rev. Applied 16, 014008 (2021).
1. A ONEM microscope: we decided to base our first ONEM on an existing aberration-corrected low energy electron microscope (LEEM). We designed a light optics scheme that can be retrofitted onto the LEEM system for illumination. It will enable illumination at various wavelength and with controllable polarization.
2. A sample holder: ONEM requires an ultrathin membrane, which separates the specimen from the photocathode and the adjacent vacuum. We have developed methods for creating, and characterizing graphene and SiN membranes, and have investigated several approaches for their subsequent functionalization.
3. An ultrathin photocathode that converts the optical near-fields into a spatially varying electron beam. We have learned how to grow efficient ultrathin alkali antimonide photocathodes using pulsed laser-deposition and thermal evaporation of the constituents. We have also implemented the necessary technologies within our ONEM apparatus.
In the second period of the project we realized the first Optical Near-field Electron Microscope:
1. We have equipped the LEEM system at the Univ. of Leiden with photocathode coating capabilities, and both an LED and a laser illumination system for ONEM. We used the system to make first ONEM images of nanomaterials, and biological materials.
Several technological advancements will serve the project in its third period:
2. We have developed methods for creating and characterizing lipid bilayers on graphene and SiN membranes.
3. We have designed and tested liquid cells for ONEM with electrochemistry capabilities
4. We have equipped the optical illumination system with closed-loop polarization control
Furthermore, we have had unforeseen results in the following areas:
5. We have developed BiPEEM (back-illuminated photo-electron emission microscopy), a new technique for studying the mean free path of electrons in matter.
6. We could prove theoretically that optical near-fields carry more information than optical far-fields.
1) Plasmonics: It is often challenging to characterize light-material interactions and plasmonic devices on the nanometer scale - especially in a liquid environment. ONEM can do that and will facilitate the design and implementation of such devices that have both scientific and clinical applications.
2) Electrochemistry: Corrosion, electro-plating, battery charging – all these electrochemical processes are of vital importance to our society. And yet, it is difficult to study them on the nanoscale. Uniquely, ONEM could study them in-situ, with nanometric resolution, large field of view, and without beam-induced artefacts.
3) Membrane biology: Superresolution fluorescence microscopy has led to significant advances in our understanding of molecular biology. ONEM promises to offer similar spatial resolution, but for unlabelled specimens. We will use ONEM to study the dynamics of supramolecular protein complexes in tethered bilayers, which can be formed close to the photocathode. Such studies could promote ONEM as an innovative tool for biology, the life sciences, and medicine.