Project description
Research combines harmonic analysis and measure theory to solve geometric analysis problems
The EU-funded GAPT project aims to solve several long-standing questions in geometric analysis by combining techniques from harmonic analysis, geometric measure theory and free boundary problems. These questions deal with harmonic measure and caloric measure, square functions and rectifiability and some related free boundary problems. In particular, the project will investigate a sharp bound for the Hausdorff dimension of harmonic measure and uncover the connection between the caloric measure associated with the heat equation and the parabolic rectifiability. Their study involves multiscale methods from the Littlewood–Paley theory and quantitative rectifiability.
Objective
This project aims to solve several long standing questions in geometric analysis by combining techniques from harmonic analysis, geometric measure theory, and free boundary problems. These questions deal with harmonic measure and caloric measure, square functions and rectifiability, and some related free boundary problems. A common feature is that their study involves multiscale methods from Littlewood-Paley theory and quantitative rectifiability.
Harmonic measure is a basic tool for the solution of the Dirichlet problem for the Laplace equation. The study of this notion is an old question which goes back to the 1910's, at least. Recently there have been some striking advances on this topic, in part motivated by the deeper understanding of the connection between Riesz transforms and rectifiability. However, there are still related open compelling questions that this project aims to explore. The main one consists of finding a sharp bound for the Hausdorff dimension of harmonic measure. Other challenging questions arise in the parabolic setting, where the connection between the caloric measure associated with the heat equation and parabolic rectifiability is not well understood. Also, the study of the Lipschitz removability for the heat equation is more difficult than in the case of the Laplace equation.
Another exciting topic that will be studied by this project deals with the relationship between rectifiability, square functions, and some free boundary problems. An important question concerns the characterization of the L^2 boundedness of Riesz transforms in terms of the Jones-Wolff potential, essential to understand the behavior of Lipschitz harmonic capacity under bilipschitz maps. Square functions, techniques of quantitative rectifiability, and monotonicity formulas from free boundary problems also appear in the study of the blowups of the singular set in the two phase problem for harmonic measure and in problems of unique continuation at the boundary.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08193 Cerdanyola Del Valles
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.