Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Geometric Analysis and Potential Theory

Projektbeschreibung

Mit Kombination aus harmonischer Analyse und Maßtheorie geometrische Analyseprobleme lösen

Das Ziel des EU-finanzierten Projekts GAPT lautet, mehrere seit langem im Raum stehende Fragen der geometrischen Analyse durch Kombination von Verfahren der harmonischen Analyse, der geometrischen Maßtheorie und freier Randwertprobleme zu beantworten. Diese Fragen betreffen das harmonische und das kalorische Maß, quadratische Funktionen und Rektifizierbarkeit sowie einige damit zusammenhängende freie Randwertprobleme. Insbesondere wird das Projekt eine scharfe Grenze für die Hausdorff-Dimension des harmonischen Maßes untersuchen und die Verbindung zwischen dem kalorischen Maß im Zusammenhang mit der Wärmegleichung und der parabolischen Rektifizierbarkeit aufklären. Die Forschung umfasst Multiskalenmethoden aus der Littlewood-Paley-Theorie und quantitativen Rektifizierbarkeit.

Ziel

This project aims to solve several long standing questions in geometric analysis by combining techniques from harmonic analysis, geometric measure theory, and free boundary problems. These questions deal with harmonic measure and caloric measure, square functions and rectifiability, and some related free boundary problems. A common feature is that their study involves multiscale methods from Littlewood-Paley theory and quantitative rectifiability.

Harmonic measure is a basic tool for the solution of the Dirichlet problem for the Laplace equation. The study of this notion is an old question which goes back to the 1910's, at least. Recently there have been some striking advances on this topic, in part motivated by the deeper understanding of the connection between Riesz transforms and rectifiability. However, there are still related open compelling questions that this project aims to explore. The main one consists of finding a sharp bound for the Hausdorff dimension of harmonic measure. Other challenging questions arise in the parabolic setting, where the connection between the caloric measure associated with the heat equation and parabolic rectifiability is not well understood. Also, the study of the Lipschitz removability for the heat equation is more difficult than in the case of the Laplace equation.

Another exciting topic that will be studied by this project deals with the relationship between rectifiability, square functions, and some free boundary problems. An important question concerns the characterization of the L^2 boundedness of Riesz transforms in terms of the Jones-Wolff potential, essential to understand the behavior of Lipschitz harmonic capacity under bilipschitz maps. Square functions, techniques of quantitative rectifiability, and monotonicity formulas from free boundary problems also appear in the study of the blowups of the singular set in the two phase problem for harmonic measure and in problems of unique continuation at the boundary.

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-ADG - Advanced Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2020-ADG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

UNIVERSITAT AUTONOMA DE BARCELONA
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 476 000,00
Adresse
EDIF A CAMPUS DE LA UAB BELLATERRA CERDANYOLA V
08193 Cerdanyola Del Valles
Spanien

Auf der Karte ansehen

Region
Este Cataluña Barcelona
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 476 000,00

Begünstigte (1)

Mein Booklet 0 0