Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Geometric Analysis and Potential Theory

Descrizione del progetto

Una ricerca combina l’analisi armonica e la teoria della misura per risolvere problemi di analisi geometrica

Il progetto GAPT, finanziato dall’UE, si propone di risolvere diversi interrogativi annosi dell’analisi geometrica combinando tecniche dell’analisi armonica, della teoria della misura geometrica e dei problemi a contorno libero. Tali interrogativi riguardano la misura armonica e la misura calorica, le funzioni quadratiche e la rettificabilità nonché alcuni problemi a contorno libero correlati. In particolare, il progetto studierà un limite netto per la dimensione di Hausdorff della misura armonica e scoprirà la connessione tra la misura calorica associata all’equazione del calore e la rettificabilità parabolica. Lo studio prevede metodi multiscala provenienti dalla teoria di Littlewood-Paley e dalla rettificabilità quantitativa.

Obiettivo

This project aims to solve several long standing questions in geometric analysis by combining techniques from harmonic analysis, geometric measure theory, and free boundary problems. These questions deal with harmonic measure and caloric measure, square functions and rectifiability, and some related free boundary problems. A common feature is that their study involves multiscale methods from Littlewood-Paley theory and quantitative rectifiability.

Harmonic measure is a basic tool for the solution of the Dirichlet problem for the Laplace equation. The study of this notion is an old question which goes back to the 1910's, at least. Recently there have been some striking advances on this topic, in part motivated by the deeper understanding of the connection between Riesz transforms and rectifiability. However, there are still related open compelling questions that this project aims to explore. The main one consists of finding a sharp bound for the Hausdorff dimension of harmonic measure. Other challenging questions arise in the parabolic setting, where the connection between the caloric measure associated with the heat equation and parabolic rectifiability is not well understood. Also, the study of the Lipschitz removability for the heat equation is more difficult than in the case of the Laplace equation.

Another exciting topic that will be studied by this project deals with the relationship between rectifiability, square functions, and some free boundary problems. An important question concerns the characterization of the L^2 boundedness of Riesz transforms in terms of the Jones-Wolff potential, essential to understand the behavior of Lipschitz harmonic capacity under bilipschitz maps. Square functions, techniques of quantitative rectifiability, and monotonicity formulas from free boundary problems also appear in the study of the blowups of the singular set in the two phase problem for harmonic measure and in problems of unique continuation at the boundary.

Meccanismo di finanziamento

ERC-ADG - Advanced Grant

Istituzione ospitante

UNIVERSITAT AUTONOMA DE BARCELONA
Contributo netto dell'UE
€ 1 476 000,00
Indirizzo
EDIF A CAMPUS DE LA UAB BELLATERRA CERDANYOLA V
08193 Cerdanyola Del Valles
Spagna

Mostra sulla mappa

Regione
Este Cataluña Barcelona
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 476 000,00

Beneficiari (1)