Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Geometric Analysis and Potential Theory

Description du projet

Une étude combine analyse harmonique et théorie de la mesure pour résoudre des problèmes d’analyse géométrique

Le projet GAPT, financé par l’UE, a pour ambition de résoudre plusieurs anciennes questions d’analyse géométrique en combinant les techniques de l’analyse harmonique, de la théorie géométrique de la mesure et des problèmes à frontière libre. Ces questions traitent de la mesure harmonique et de la mesure calorique, des fonctions carrées et de la rectifiabilité, ainsi que de certains problèmes de frontière libre connexes. Le projet étudiera en particulier une limite nette pour la dimension de Hausdorff de la mesure harmonique et établira le lien entre la mesure calorique associée à l’équation de la chaleur et la rectifiabilité parabolique. Cette étude fait appel à des méthodes multi-échelles issues de la théorie de Littlewood-Paley et à la rectifiabilité quantitative.

Objectif

This project aims to solve several long standing questions in geometric analysis by combining techniques from harmonic analysis, geometric measure theory, and free boundary problems. These questions deal with harmonic measure and caloric measure, square functions and rectifiability, and some related free boundary problems. A common feature is that their study involves multiscale methods from Littlewood-Paley theory and quantitative rectifiability.

Harmonic measure is a basic tool for the solution of the Dirichlet problem for the Laplace equation. The study of this notion is an old question which goes back to the 1910's, at least. Recently there have been some striking advances on this topic, in part motivated by the deeper understanding of the connection between Riesz transforms and rectifiability. However, there are still related open compelling questions that this project aims to explore. The main one consists of finding a sharp bound for the Hausdorff dimension of harmonic measure. Other challenging questions arise in the parabolic setting, where the connection between the caloric measure associated with the heat equation and parabolic rectifiability is not well understood. Also, the study of the Lipschitz removability for the heat equation is more difficult than in the case of the Laplace equation.

Another exciting topic that will be studied by this project deals with the relationship between rectifiability, square functions, and some free boundary problems. An important question concerns the characterization of the L^2 boundedness of Riesz transforms in terms of the Jones-Wolff potential, essential to understand the behavior of Lipschitz harmonic capacity under bilipschitz maps. Square functions, techniques of quantitative rectifiability, and monotonicity formulas from free boundary problems also appear in the study of the blowups of the singular set in the two phase problem for harmonic measure and in problems of unique continuation at the boundary.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-ADG - Advanced Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2020-ADG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITAT AUTONOMA DE BARCELONA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 476 000,00
Adresse
EDIF A CAMPUS DE LA UAB BELLATERRA CERDANYOLA V
08193 Cerdanyola Del Valles
Espagne

Voir sur la carte

Région
Este Cataluña Barcelona
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 476 000,00

Bénéficiaires (1)

Mon livret 0 0