Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Molecular materials for a new generation of artificial muscles

Descrizione del progetto

Materiali innovativi forniscono muscoli artificiali dal movimento realistico

Lo sviluppo di «muscoli artificiali» sta guadagnando terreno grazie ai progressi tecnologici nei campi della robotica e della medicina. Nonostante la loro importanza nella vita quotidiana, i dispositivi attuatori (che convertono l’energia in movimento) non sono in grado di compiere movimenti delicati, fluidi e silenziosi che imitino il movimento e la destrezza umana. Il progetto E-MOTION, finanziato dall’UE, svilupperà materiali morbidi innovativi su scala macroscopica basati su molecole di spin crossover commutabili con notevoli prestazioni attuative. Utilizzando una combinazione pionieristica di metodi di ingegneria dei materiali, il progetto fornirà i materiali commutabili con proprietà di attuazione elettrica, auto-rilevamento e raccolta di energia. Avendo una solida conoscenza della relazione tra la loro struttura profonda e la proprietà meccanica, E-MOTION userà i materiali come base per sviluppare attuatori originali a fibre intrecciate e dispositivi attuatori microfluidici stampati in 3D.

Obiettivo

Actuator devices converting energy into motion are a fundamental part of everyday life. However, there is currently an unmet need in actuation technologies to provide soft, smooth, noiseless movement that can mimic human motion and dexterity. The development of such “artificial muscles” is burgeoning in both interest and importance as it would enable significant advances in areas as important as robotics, medicine and aeronautics. To enable a step-change in this field, E·MOTION proposes to develop unprecedented macroscopic-scale soft materials based on switchable spin crossover molecules with remarkable actuating performances. Using an innovative combination of material engineering methods these materials will be endowed with electrical actuation, self-sensing and energy harvesting properties, which will be a major breakthrough. More fundamentally, E·MOTION aims at understanding in-depth structure vs. mechanical property relationships in these switchable materials, which is essential for processing and optimizing their function. A multiscale experimental and theoretical approach will be used to assess how the molecular deformation and change in molecular connectivity under external stimuli affect macroscopic mechanical properties as well as the cycle life. Finally, E·MOTION will take a major shift on the side of actuator design by the development of original fibre-braided actuators as well as 3D-printed, microfluidic actuator devices made of these materials. These advanced actuator designs will then be thoroughly analysed for their ability to mimic complex muscular schemes. This ambitious, multidisciplinary project that brings together various aspects of molecular and polymer chemistry, condensed matter physics, mechanical engineering and advanced manufacturing, will enable a new departure in my career and a significant leap forward in the state-of-the-art that shall expedite the societal exploitation of these novel, molecule-based actuator technologies.

Meccanismo di finanziamento

ERC-ADG - Advanced Grant

Istituzione ospitante

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE
€ 2 611 777,00
Indirizzo
RUE MICHEL ANGE 3
75794 Paris
Francia

Mostra sulla mappa

Regione
Ile-de-France Ile-de-France Paris
Tipo di attività
Research Organisations
Collegamenti
Costo totale
€ 2 666 152,00

Beneficiari (2)