Project description
Paving the way to the future of the Internet of things
With the continuous rise of the Internet of things and the steady spread of connected devices, there is an increasing need concerning private edge computing and connectivity. The EU-funded LANTERN project will assist in fulfilling this need by researching low-latency and private edge computing networks and studying ways in which they could be developed in wireless random access networks. The team will rely on tools from coding and information theory. They plan to overcome the challenges of establishing foundations for privacy and reliability in latency-critical, multiserver and multiclient edge computing and in devising resilient coding schemes intertwined with energy-efficient scalable wireless random access methodologies.
Objective
We are living in a world where connected devices outnumber human population, and this trend keeps growing: around 24.6 billion connections are forecasted in 2025—more than three times the estimated population. This gives rise to the Internet of Things (IoT) in which virtually all devices are interconnected and continuously share data. The IoT is a key enabler for a host of applications, such as intelligent transportation systems, smart cities, and smart grids. Thus it promises to transform the way we live. To realize the IoT, it is crucial and timely to develop a communication and computation infrastructure that is able to support the processing of a vast amount of time-sensitive data, for which a centralized computation is inadequate. Edge computing has emerged as a novel paradigm to guarantee very low-latency and high-bandwidth computing services. It involves moving the computation power from the cloud to where data is generated, by pooling the available resources at the network edge.
In this project, we investigate how low-latency and private edge computing protocols can be developed in wireless random-access networks. Relying on tools from information theory and coding theory, we will tackle the two following challenging objectives: i) to establish a foundation for privacy and reliability in latency-critical, multi-client and multi-server edge computing in random-access networks; and ii) to devise resilient coding schemes together with energy-efficient and scalable wireless random-access protocols to achieve low latency and preserve privacy in distributed edge computing. The results of this project will help paving the way to the full realization of the IoT in the near future.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology civil engineering urban engineering smart cities
- natural sciences computer and information sciences internet internet of things
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 GOTEBORG
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.