European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Knots in dynamical systems with applications to electromagnetism and quantum systems

Description du projet

Suivre l’évolution temporelle des nœuds en électromagnétisme et en mécanique quantique

La théorie des nœuds, qui consiste à étudier les courbes fermées en trois dimensions ainsi que leurs déformations possibles sans qu’une partie n’en recoupe une autre, revêt une importance croissante en biologie, en chimie et en physique. Financé par le programme Actions Marie Skłodowska-Curie, le projet KNOTDYNAPP entend étudier l’évolution temporelle des nœuds dans différents systèmes dynamiques. Les efforts de l’équipe viseront en particulier à démontrer l’existence de solutions pour les équations différentielles contenant des nœuds qui subsistent de manière permanente, en électromagnétisme et en mécanique quantique. Pour aborder certains problèmes mathématiques dans ces domaines, les chercheurs emprunteront des techniques à la géométrie différentielle et à la topologie de basse dimension.

Objectif

Mathematical knot theory plays an increasingly important role in biology, chemistry and physics. In this project we aim to study the time evolution of knots in different dynamical systems. We are particularly interested in differential equations that are motivated by electromagnetism and quantum mechanics. For such differential equations we aim to prove the existence of solutions that contain knots, which evolve as desired, and explicitly construct such solutions.

In the case of electromagnetic fields this refers to vector fields, representing the electric and magnetic part of such a field, that satisfy Maxwell's equations and have closed flow lines in the shape of a given knot for all time. In particular, we want the knot type of this closed flow line to be stable, i.e. it is not allowed to change over time.

In the case of quantum wavefunctions we are concerned with complex-valued functions that satisfy linear or non-linear Schrödinger equations and whose nodal set is knotted at a moment in time. We plan to develop a construction of such functions for which the time evolution of such a quantum vortex knot is determined by a prescribed surface, embedded in 4-dimensional space representing space and time.

We also study relations between topological properties of knots and the corresponding functions. For example, we investigate the connection between the fibration property of a knot K and the non-vanishing of a magnetic field induced by an electric current through a knotted wire in a shape that is isotopic to K.

These mathematical problems are approached with techniques from differential geometry, low-dimensional topology and the theory of differential equations. The proposal also discusses the two way transfer of knowledge between the host institute and the candidate.

Régime de financement

MSCA-IF-EF-ST - Standard EF

Coordinateur

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Contribution nette de l'UE
€ 160 932,48
Adresse
CALLE SERRANO 117
28006 Madrid
Espagne

Voir sur la carte

Région
Comunidad de Madrid Comunidad de Madrid Madrid
Type d’activité
Research Organisations
Liens
Coût total
€ 160 932,48