Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Knots in dynamical systems with applications to electromagnetism and quantum systems

Projektbeschreibung

Verfolgung der Zeitentwicklung von Knoten innerhalb von Elektromagnetismus und Quantenmechanik

Die Knotentheorie, die sich der Untersuchung geschlossener Kurven in drei Dimensionen und ihrer möglichen Windungen widmet, ohne dass ein Teil einen anderen durchschneidet, gewinnt in Biologie, Chemie und Physik immer mehr an Bedeutung. Ziel des im Rahmen der Marie-Skłodowska-Curie-Maßnahmen finanzierten Projekts KNOTDYNAPP ist, die Zeitentwicklung von Knoten in verschiedenen dynamischen Systemen zu erforschen. Besondere Aufmerksamkeit gilt dem Nachweis der Existenz von Differentialgleichungslösungen, die Knoten enthalten, die für alle Zeiten innerhalb von Elektromagnetismus und Quantenmechanik bestehen bleiben. Um auf diesen Gebieten bestimmte mathematische Probleme zu lösen, werden die Forschenden Verfahren aus der Differentialgeometrie und der niedrigdimensionalen Topologie zum Einsatz bringen.

Ziel

Mathematical knot theory plays an increasingly important role in biology, chemistry and physics. In this project we aim to study the time evolution of knots in different dynamical systems. We are particularly interested in differential equations that are motivated by electromagnetism and quantum mechanics. For such differential equations we aim to prove the existence of solutions that contain knots, which evolve as desired, and explicitly construct such solutions.

In the case of electromagnetic fields this refers to vector fields, representing the electric and magnetic part of such a field, that satisfy Maxwell's equations and have closed flow lines in the shape of a given knot for all time. In particular, we want the knot type of this closed flow line to be stable, i.e. it is not allowed to change over time.

In the case of quantum wavefunctions we are concerned with complex-valued functions that satisfy linear or non-linear Schrödinger equations and whose nodal set is knotted at a moment in time. We plan to develop a construction of such functions for which the time evolution of such a quantum vortex knot is determined by a prescribed surface, embedded in 4-dimensional space representing space and time.

We also study relations between topological properties of knots and the corresponding functions. For example, we investigate the connection between the fibration property of a knot K and the non-vanishing of a magnetic field induced by an electric current through a knotted wire in a shape that is isotopic to K.

These mathematical problems are approached with techniques from differential geometry, low-dimensional topology and the theory of differential equations. The proposal also discusses the two way transfer of knowledge between the host institute and the candidate.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) H2020-MSCA-IF-2020

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 160 932,48
Adresse
CALLE SERRANO 117
28006 MADRID
Spanien

Auf der Karte ansehen

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 160 932,48
Mein Booklet 0 0