Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Knots in dynamical systems with applications to electromagnetism and quantum systems

Descrizione del progetto

Monitorare l’evoluzione temporale dei nodi nell’elettromagnetismo e nella meccanica quantistica

La teoria dei nodi, lo studio delle curve chiuse in tre dimensioni e delle loro possibili deformazioni senza che una parte tagli un’altra, assume un’importanza sempre maggiore in biologia, chimica e fisica. Finanziato dal programma di azioni Marie Skłodowska-Curie, il progetto KNOTDYNAPP intende studiare l’evoluzione temporale dei nodi in diversi sistemi dinamici concentrandosi in particolare sulla dimostrazione dell’esistenza di soluzioni di equazioni differenziali contenenti nodi che persistono per tutto il tempo nell’elettromagnetismo e nella meccanica quantistica. Per affrontare alcuni problemi matematici in questi campi, i ricercatori prenderanno in prestito tecniche dalla geometria differenziale e dalla topologia in dimensione bassa.

Obiettivo

Mathematical knot theory plays an increasingly important role in biology, chemistry and physics. In this project we aim to study the time evolution of knots in different dynamical systems. We are particularly interested in differential equations that are motivated by electromagnetism and quantum mechanics. For such differential equations we aim to prove the existence of solutions that contain knots, which evolve as desired, and explicitly construct such solutions.

In the case of electromagnetic fields this refers to vector fields, representing the electric and magnetic part of such a field, that satisfy Maxwell's equations and have closed flow lines in the shape of a given knot for all time. In particular, we want the knot type of this closed flow line to be stable, i.e. it is not allowed to change over time.

In the case of quantum wavefunctions we are concerned with complex-valued functions that satisfy linear or non-linear Schrödinger equations and whose nodal set is knotted at a moment in time. We plan to develop a construction of such functions for which the time evolution of such a quantum vortex knot is determined by a prescribed surface, embedded in 4-dimensional space representing space and time.

We also study relations between topological properties of knots and the corresponding functions. For example, we investigate the connection between the fibration property of a knot K and the non-vanishing of a magnetic field induced by an electric current through a knotted wire in a shape that is isotopic to K.

These mathematical problems are approached with techniques from differential geometry, low-dimensional topology and the theory of differential equations. The proposal also discusses the two way transfer of knowledge between the host institute and the candidate.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2020

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 160 932,48
Indirizzo
CALLE SERRANO 117
28006 MADRID
Spagna

Mostra sulla mappa

Regione
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 160 932,48
Il mio fascicolo 0 0