Skip to main content

A structural and functional understanding Influenza virus mRNA production in the context of the transcriptionally functional ribonucleoprotein (RNP) particle.

Objective

Influenza is a major public health burden, with seasonal outbreaks contributing significantly to mortality worldwide, and the emergence of pandemic strains remaining an ever-present threat. Influenza drug and vaccine conception efforts are aided by a thorough understanding of its molecular biology.

A key aspect of the influenza lifecycle is the production of capped and poly-adenylated messenger RNA by the heterotrimeric influenza polymerase (FluPol). Ground-breaking work performed by the Cusack lab, has described with residue-resolution detail, the FluPol structures that form during transcription of short, non-nucleoprotein (NP) bound viral RNAs (vRNAs). However, influenza transcription in vivo occurs within the ribonucleoprotein (RNP) particle and does not utilise naked genome segments. The viral RNP (vRNP) is a super-helical complex composed FluPol bound at the conserved 3′ and 5′ ends of a vRNA, which is coated with NP. The current low-resolution structures provide little information about the molecular details of vRNP function, particularly, how NPs interact with FluPol and the vRNA template.

Via an inter-disciplinary approach, I will utilise cryo-electron microscopy methods, transcription assays and single-molecule fluorescence, to obtain the first high resolution structure of a dynamic influenza vRNP, with a particular focus on the spatial organisation of NPs relative to FluPol. In addition to this work facilitating future influenza drug research, it will provide a basis to investigate the vRNP during other lifecycle stages and act as proof-of-principle for study of other viral protein-RNA complexes, such as those from corona-, arena- and bunyaviruses.

Work will be performed in the groups of Stephen Cusack and Olivier Duss based at EMBL Grenoble and Heidelberg, respectively. Here, I will have access to world-leading facilities and training opportunities, supporting my growth as an independent researcher and an expert in RNA virus structural biology.

Call for proposal

H2020-MSCA-IF-2020
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF

Coordinator

EUROPEAN MOLECULAR BIOLOGY LABORATORY
Address
Meyerhofstrasse 1
69117 Heidelberg
Germany
Activity type
Research Organisations
EU contribution
€ 184 707,84