Descripción del proyecto
Biomateriales inteligentes para la bioimpresión de tejidos
La impresión 3D es un proceso que permite fabricar objetos físicos a partir de un modelo digital mediante la deposición sucesiva de numerosas capas delgadas de diferentes materiales. La impresión 3D se ha adentrado en la ingeniería tisular para fabricar tejidos a partir de células y otros biomateriales. El objetivo del proyecto MagnetoPrint, financiado con fondos europeos, es superar los desafíos técnicos que presenta la bioimpresión, por ejemplo una baja resolución, que impide la deposición y conservación correctas de las células y biomateriales. Los investigadores desarrollarán un nuevo método que refleje fielmente las condiciones naturales del tejido original. Se prevé que el proyecto impulse la fabricación de tejidos biomiméticos.
Objetivo
3D printing (3DP) technology plays a pivotal role in the biofabrication of engineered tissues which are useful towards several clinical, diagnostic and research applications. Of the different 3DP approaches, extrusion bioprinting (EBp) is the most widely used, for it is cost effective and allows rapid fabrication of physiological scale tissues with controlled placement of different types of encapsulated cells and biomaterials. However, the poor resolution (> 200 µm) of most EBp approaches limits the topographical cues necessary to impart anisotropic cell (avg. ϕ = 20 µm) and extracellular matrix organization within the tissues. Moreover, most tissue engineering approaches do not meet the nutritional requirements of the cells within thick tissues, and utilize static cultures which do not recapitulate the physiological growth conditions. Due to these reasons, the engineered tissues fail to biomimic native tissue properties. The proposed MagnetoPrint process aims to achieve biomimicry via a synergy of chemistry, biology, electromechanical systems design, structural mechanics and multiphysics modeling. First, cell-laden hydrogels are synthesized which could be sized into microstrands (avg. ϕ = 40 µm) during printing, that could impart the relevant anisotropic characteristics. Second, ferromagnetic particles are incorporated within distinct compartments inside the hydrogels to facilitate the deformation of printed tissue in the presence of external magnetic fields. Control of the domain orientations of the magnetic particles is used to impart auxetic properties, to further support nutrient transport and tissue maturation, which is also verified by computational modeling. Third, a complex muscle/tendon interface is printed and matured under the relevant exercising conditions to demonstrate the effectiveness of the project. The process, with its unprecedented features, represents significant progress in the advanced scalable manufacturing of biomimetic engineered tissues.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- medical and health sciencesmedical biotechnologytissue engineering
- natural sciencescomputer and information sciencescomputational sciencemultiphysics
- engineering and technologymechanical engineeringmanufacturing engineeringadditive manufacturing
- engineering and technologyindustrial biotechnologybiomaterials
Palabras clave
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
8092 Zuerich
Suiza