Description du projet
Sonder la dynamique non linéaire des grands systèmes fermioniques
Les systèmes fermioniques jouent un rôle important dans la description des molécules et de la matière condensée. Leur évolution temporelle est déterminée par l’équation de Schrödinger dont l’analyse est toutefois très complexe dans les grands systèmes comportant de nombreuses particules. Financé par le programme Actions Marie Skłodowska-Curie, le projet EFFECT a pour objectif de mieux comprendre la dynamique hors équilibre des grands systèmes fermioniques et leurs interactions avec des champs électromagnétiques quantifiés. Le projet prévoit de développer de nouveaux outils mathématiques pour approcher ces grands systèmes par des équations d’évolution effectives plus simples pour des systèmes fermioniques à température nulle et finie.
Objectif
The goal of this project is to substantially improve the understanding of the non-equilibrium dynamics of large fermionic systems and their interaction with the quantized electromagnetic field. Fermionic systems play a significant role in the description of molecules and condensed matter. Their time evolution is determined by the Schrödinger equation which, however, is very challenging to analyze for large systems with many particles. For this reason simpler effective equations are used to approximately predict the time evolution. These are easier to investigate but less exact. In physics, effective equations are derived by heuristic arguments. Beyond that, a mathematical analysis is essential to prove the range of validity of the applied approximation. In the scope of this project new mathematical tools will be developed to rigorously derive effective evolution equations for fermionic systems at zero and finite temperature. The Hartree-Fock equation with Coulomb potential will be derived from the Schrödinger equation in a many-fermion mean-field limit which is coupled to a semiclassical limit. In the same scaling limit the use of the (fermionic) Maxwell-Schrödinger equations as approximate time evolution of the Pauli-Fierz Hamiltonian will be justified. Moreover, it will be proven that the quantum fluctuations around the effective equations are described by Bogoliubov theory. Explicit estimates for the error caused by the approximation will be provided. In total, this will enhance the understanding about the creation of correlations among fermions and the emergence of classical field theories from quantum field theories. The derivations are long outstanding and there is an extensive need for new mathematical methods in semiclassical analysis and many-body quantum mechanics. It is expected that the new techniques will also have a strong impact on studies about dilute Bose gases at positive temperature and fermionic systems in the kinetic regime.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles sciences physiques électromagnétisme et électronique électromagnétisme
- sciences naturelles sciences physiques physique théorique physique des particules fermion
- sciences naturelles mathématiques mathématiques pures analyse mathématique
- sciences naturelles sciences physiques physique quantique théorie quantique des champs
- sciences naturelles informatique et science de l'information intelligence artificielle programmation heuristique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2020
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
4051 Basel
Suisse
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.