Project description
Reducing uncertainty and increasing robustness in space exploration autonomy
Our ability to explore our cosmos increases exponentially with advanced technologies for autonomous missions. Unmanned spacecraft must travel great distances under extremely harsh conditions in largely uncharted regions. The robustness of their instrumentation for guidance, navigation and control directly impacts not only successful data retrieval but also the value of the data retrieved. Asteroids are remnants of planet formation and can tell us about the origins of our solar system. With the support of the Marie Skłodowska-Curie Actions programme, the THOR project will enhance autonomous space operations focused on asteroid exploration via the integration of two quantifiable sources of uncertainty into space operation management and planning.
Objective
The overarching goal of the THOR research project is to augment space operations autonomy and robustness through uncertainty management and quantification. This involves a bottom up process where novel uncertainty estimation and propagation techniques will be employed to be subsequently embedded within a stochastic robust controller. The main outcome will be a robust non-linear non-gaussian integrated guidance, navigation and control strategy with both model-based and exogenous disturbance estimation. Since both uncertainty sources are quantified, a more reliable and efficient space operation management and planning will be obtained. The THOR scenario relates to asteroid exploration which is one of the most challenging and uncertain space operations nowadays. This is due to the limited asteroid data known prior to the arrival if the body is visited for the first time. Two mission phases can be clearly distinguished: on-orbit data collection where most of the uncertainty will be removed by estimation; then, an entry descent and landing critical phase where the stochastic robust controller will use the previous uncertainty knowledge, is envisioned. The THOR project methodology and results are expected to advance current state-of-the-art in autonomous spacecraft guidance, navigation and control, thus enabling more advanced space exploration mission concepts with a higher scientific return, without loss of generality.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy space exploration
- natural sciences physical sciences astronomy planetary sciences asteroids
- natural sciences mathematics applied mathematics dynamical systems
- natural sciences computer and information sciences software software development
- natural sciences mathematics applied mathematics statistics and probability
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
41004 Sevilla
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.