European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Bioresorbable Organic Electronic Devices

Description du projet

En finir avec la récupération des implants bioélectroniques

Les systèmes électroniques biorésorbables représentent une nouvelle classe de technologie en médecine d’urgence, en rétablissement et en réadaptation. Ces systèmes sont composés de matériaux qui se dissolvent complètement, à des vitesses programmables, après leur insertion dans le corps, et entendent éliminer le besoin de récupérer les implants bioélectroniques en vue de produire des solutions zéro déchets destinées à l’électronique grand public. Dans ce contexte, le projet BioResORGEL, financé par l’UE, développera le premier exemple de dispositifs bioélectroniques organiques biorésorbables qui se dégradent in situ par l’action d’enzymes spécifiques. En exploitant la chimie des matériaux, l’électronique organique et la biologie cellulaire (biodégradation et toxicité), le projet s’attachera à intégrer des composants de dispositifs très performants qui sont érodés par des enzymes normalement sécrétées par les cellules immunitaires au cours de l’inflammation et de la régénération des tissus.

Objectif

Bioresorbable bioelectronics aim to produce technologies that monitor/modulate biological functions and safely integrate into life and the environment. It prospects to eliminate the need for bioelectronic implants retrieval and to produce zero waste solutions for consumer electronics.

The integration of degradable substrates with water-soluble electronic components (metals and semiconductors) led to the first examples of bioresorbable electronic implants. A key challenge is to develop devices combining high performance, stable operation, and controlled degradation at the end of their life cycle. Current hydrolysable materials suffer from inadequate lifetime, uncontrolled bulk degradation, and/or poor performance. Advanced bioresorbable microelectronics would require components that degrade in biological environments by the action of enzymes – something that cannot be achieved with conventional metal-oxide semiconductors.

Conjugated polymers offer transport of both ions and electrons, low operating voltages, and flexibility – features exploited to improve state-of-the-art bioelectronic devices and interfaces – and, most importantly, the potential to undergo enzymatic breakdown. Yet, there is currently no example of a conjugated polymer and device thereof combining all the required properties.

This project develops the first example of bioresorbable organic bioelectronic devices that are degraded in situ by the action of specific enzymes. It integrates aspects from materials chemistry (polymer design), organic electronics (device design), and cellular biology (biodegradation and toxicity). Key focus is to integrate device components that provide high performance and that are eroded by enzymes normally secreted by immune cells during inflammation and tissue regeneration. This interdisciplinary approach suggests a promising future across different fields – from fundamental aspects of polymers degradation and toxicity to the next generation bioelectronic interfaces.

Coordinateur

KUNGLIGA TEKNISKA HOEGSKOLAN
Contribution nette de l'UE
€ 203 852,16
Adresse
BRINELLVAGEN 8
100 44 Stockholm
Suède

Voir sur la carte

Région
Östra Sverige Stockholm Stockholms län
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 203 852,16