Descripción del proyecto
Un estudio podría mejorar la comprensión de la geometría de variedades de caracteres
Las variedades de caracteres son espacios geométricos omnipresentes en las matemáticas y la física que capturan invariantes topológicas y cuánticas importantes. Determinan los parámetros de las ecuaciones diferenciales ordinarias complejas y singulares y sus generalizaciones. Sin embargo, las variedades de caracteres suelen ser espacios singulares complicados, por lo que no resulta fácil acceder a la valiosa información que codifican. El objetivo del proyecto AbQuantumSpec, financiado por las Acciones Marie Skłodowska-Curie, es desarrollar un nuevo método para describir las variedades de caracteres, llamado abelianización. Este nuevo método debería permitir la construcción de sistemas de coordenadas especiales sobre las variedades de caracteres (llamados coordenadas espectrales) que podrían capturar sus importantes estructuras geométricas.
Objetivo
This cross-disciplinary project lies at the interface of geometry, mathematical physics, perturbation theory, and integrable systems, combining techniques from algebraic topology, cluster algebras, ordinary differential equations, and asymptotic analysis. The main goal is to advance our understanding of the geometry of character varieties and their quantisation. This project -- carried out by Nikita Nikolaev under the supervision of Marta Mazzocco at the University of Birmingham -- is expected to result in a fundamental innovation in geometry and have important implications for quantum field theory. It will open a vast new scientific arena and will serve to establish Nikolaev amongst research leaders in this highly active research area. Character varieties are geometric spaces which are ubiquitous in mathematics and physics, where they capture important topological and quantum invariants. These spaces parameterise singular complex ordinary differential equations (such as the Airy and Bessel equations, or even time-independent Schrödinger equations), as well as their generalisations: meromorphic connections on vector bundles over a Riemann surface. However, character varieties are usually complicated singular spaces, so the valuable information they encode is not easy to access. This project will develop a new method to describe character varieties called abelianisation. Ideas behind abelianisation stem from the WKB method in quantum mechanics and have recently resurfaced in the context of quantum field theory and string theory. Abelianisation will allow to construct special coordinate systems on character varieties (called spectral coordinates) which naturally capture crucially important geometric structure of character varieties (most prominently the symplectic and cluster structures). In other words, spectral coordinates will be a geometric gadget to decrypt mathematical and physical information encrypted in character varieties.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras topología
- ciencias naturales matemáticas matemáticas puras álgebra
- ciencias naturales ciencias físicas física teórica teoría de cuerdas
- ciencias naturales matemáticas matemáticas puras geometría
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2020
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
B15 2TT Birmingham
Reino Unido
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.