Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Abelianisation of Connections, Quantum Curves, and Spectral Clusters

Description du projet

Une étude susceptible de faire progresser la compréhension de la géométrie des variétés de caractères

Les variétés de caractères sont des espaces géométriques omniprésents en mathématiques et en physique qui saisissent d’importants invariants topologiques et quantiques. Elles paramètrent les équations différentielles ordinaires complexes singulières et leurs généralisations. Toutefois, les variétés de caractères sont généralement des espaces singuliers compliqués, de sorte que les informations précieuses qu’elles encodent sont difficilement accessibles. Financé par le programme Actions Marie Skłodowska-Curie, le projet AbQuantumSpec envisage de développer une nouvelle méthode de description des variétés de caractères appelée abélianisation. Cette nouvelle méthode devrait permettre la construction de systèmes de coordonnées spéciaux sur les variétés de caractères (appelées coordonnées spectrales) qui pourraient rendre compte de leurs importantes structures géométriques.

Objectif

This cross-disciplinary project lies at the interface of geometry, mathematical physics, perturbation theory, and integrable systems, combining techniques from algebraic topology, cluster algebras, ordinary differential equations, and asymptotic analysis. The main goal is to advance our understanding of the geometry of character varieties and their quantisation. This project -- carried out by Nikita Nikolaev under the supervision of Marta Mazzocco at the University of Birmingham -- is expected to result in a fundamental innovation in geometry and have important implications for quantum field theory. It will open a vast new scientific arena and will serve to establish Nikolaev amongst research leaders in this highly active research area. Character varieties are geometric spaces which are ubiquitous in mathematics and physics, where they capture important topological and quantum invariants. These spaces parameterise singular complex ordinary differential equations (such as the Airy and Bessel equations, or even time-independent Schrödinger equations), as well as their generalisations: meromorphic connections on vector bundles over a Riemann surface. However, character varieties are usually complicated singular spaces, so the valuable information they encode is not easy to access. This project will develop a new method to describe character varieties called abelianisation. Ideas behind abelianisation stem from the WKB method in quantum mechanics and have recently resurfaced in the context of quantum field theory and string theory. Abelianisation will allow to construct special coordinate systems on character varieties (called spectral coordinates) which naturally capture crucially important geometric structure of character varieties (most prominently the symplectic and cluster structures). In other words, spectral coordinates will be a geometric gadget to decrypt mathematical and physical information encrypted in character varieties.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2020

Voir tous les projets financés au titre de cet appel

Coordinateur

THE UNIVERSITY OF BIRMINGHAM
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 224 933,76
Adresse
Edgbaston
B15 2TT Birmingham
Royaume-Uni

Voir sur la carte

Région
West Midlands (England) West Midlands Birmingham
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 224 933,76
Mon livret 0 0