Descripción del proyecto
Química computacional en el diseño de medicamentos antineoplásicos
Dañar el ADN de las células cancerosas es una de las estrategias quimioterapéuticas más populares contra el cáncer. Para mejorar el índice terapéutico de los compuestos que dañan el ADN, es necesario utilizar herramientas de química computacional. Estas permiten visualizar el daño y la reparación de la doble hélice de ADN tras la unión del medicamento. Los objetivos fundamentales del proyecto financiado con fondos europeos SN2DNA son evaluar los efectos distorsionadores de los complejos quimioterapéuticos de ADN-medicamento y determinar «in silico» las propiedades de los candidatos a medicamento. Este planteamiento «in silico» podría aplicarse en la preparación del diseño y el descubrimiento de medicamentos antineoplásicos.
Objetivo
Administration of DNA-damaging reagents constitutes one of the most effective chemotherapeutic strategies for the cancer treatment. The families of drugs developed over the years for this purpose are based on second-order nucleophilic substitution (SN2) reactions. Innovative candidates to improve the therapeutic action of these compounds have been designed based on increasing the number of electrophilic positions (En) of the reagent by making n>2. This increased electrophilicity must generate interstrand crosslink adducts that should result in irreversible lesions in the DNA of cancer cells. Computational chemistry tools based on quantum mechanics and molecular modelling, constitute key tools for a better understanding of DNA damage and repair after the formation of the covalently bound complexes that distort the double helix. Thus, the aim of the project described in this proposal is to: 1) compute the structures and evaluate the distorting effects of DNA adducts with polyelectrophilic chemotherapeutic reagents, 2) compute the kinetics of the consecutive SN2 processes (on both carbon atoms and metallic centres) involving interstrand and intrastrand crosslinks and 3) assess in silico the ADME (Adsorption, Distribution, Metabolism and Excretion) properties of the synthesised candidates. Those objectives will be achieved by computing the behaviour of different families of molecules through quantum mechanical - at DFT level of theory- and Molecular Mechanics calculations - based on QM/MM method. Some of these candidates have been synthesised in the laboratories of the hosting group and the corresponding preliminary and promising biological results are already available. The outputs of this project will result in a patent proposal and research articles to be published in high impact journals. Our findings will be open-access available in order to contribute with the research on anticancer drugs design.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesciencias físicasfísica cuántica
- ciencias médicas y de la saludmedicina básicaquímica medicinal
- ciencias naturalesciencias biológicasgenéticaADN
- ciencias médicas y de la saludmedicina clínicaoncología
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
48940 Leioa
España