Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Self-driven INTramedullary bonE Regeneration: Development of a SINTER nail for bone reconstruction

Description du projet

Développement d’un clou automoteur de transport osseux pour la reconstruction osseuse

Le transport osseux est une procédure dédiée à la croissance d’os nouveau dans une région où une section est manquante suite à une infection, à un traumatisme ou à une maladie. L’os peut être transporté à l’aide d’un dispositif d’allongement externe ou interne. Au cours du processus d’allongement interne du membre, le dispositif, contenant un petit moteur magnétique, est inséré dans l’os. L’allongement lent du dispositif est activé par un contrôleur externe, ce qui provoque l’allongement de l’os. Financé par le programme Actions Marie Skłodowska-Curie, le projet SINTER entend développer un clou automoteur de transport osseux pour reconstruire les grands défauts osseux entraînés par un traumatisme ou l’ablation d’une tumeur. L’automatisation du processus permettra de surmonter les limitations actuelles des techniques de transport osseux et favorisera considérablement l’utilisation des clous intramédullaires.

Objectif

As a Maria Skłodowska-Curie Fellow, I aim to develop a self-driven bone transport nail to reconstruct large bone defects caused after trauma or tumour removal. This is to overcome the current limitations of bone transport techniques that use intramedullary nails. These are: daily involvement of patients during the distraction process, regular interventions by surgeons and the significant cost of the procedure. These limitations have led to limited use of this method regardless of its superior outcomes compared to other commonly used techniques. It is becoming more popular now as it overcomes limitations of external fixators: a prolonged treatment time, diligent care, as well as psychological, hygiene, and daily activity burden for patients and caregivers. Automating the process and reducing its cost, can considerably promote the use of the nails. Under the supervision of Prof. Anthony Bull, a world leader in translational low-cost medical devices and musculoskeletal biomechanics at Imperial College London, I aim to overcome this translational barrier by developing a novel distraction mechanism. I will optimise the nail using a spring-piston system to achieve the optimised distraction rate for bone reconstruction. The unique design of the nails allows manufacturing by traditional processes as well as additive manufacturing. Given the type of trauma and tumour, the defect could be developed at different places in the bone. Therefore, surgical and technical considerations will be taken into account in collaboration with Mr Craig Gerrand and Mr Pierluigi Cuomo, world leaders in bone cancer/transport surgery, during a secondment at the Royal National Orthopaedic Hospital. This project will develop the first self-driven intramedullary nail for bone transport. This nail is not only advantageous compared to the available ones but also a low-cost option that can make this technique more affordable and available worldwide, particularly in Low- and Middle-Income Countries.

Coordinateur

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Contribution nette de l'UE
€ 212 933,76
Adresse
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Royaume-Uni

Voir sur la carte

Région
London Inner London — West Westminster
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 212 933,76