Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

A Novel and Affordable Multi-Fidelity Deep Neural Network Uncertainty Quantification/Robust Optimization Design Framework for Industrial Turbomachinery

Projektbeschreibung

Ein neuartiger Rahmen unterstützt den Entwurf der ökologischeren mehrstufigen Turbomaschinen von morgen

Turbomaschinen sind Geräte, die Energie durch die Expansion oder Kompression eines sich kontinuierlich bewegenden Fluids über rotierende Schaufeln übertragen, und sie umfassen Turbinen und Kompressoren. Mehrstufige Turbomaschinen nutzen mehrere Zyklen einer solchen Expansion oder Kompression in einer Reihe, um eine sehr hohe Druckdifferenz vom Einlass zum Auslass zu erreichen. Mit Unterstützung der Marie-Skłodowska-Curie-Maßnahmen wird im Projekt MENTOR ein tiefes neuronales Netzwerk erstellt, das die Auswirkungen von Unsicherheiten auf die Leistung mehrstufiger Turbomaschinen in den fortgeschrittenen Phasen des Entwurfs mehrstufiger Turbomaschinen modellieren wird. Optimierte Turbinen und Kompressoren mit höheren Wirkungsgraden werden Europas Ziele in Bezug auf Klimaneutralität und Nachhaltigkeit unterstützen.

Ziel

"This fellowship aims to train a talented early career researcher and to contribute to the EU scientific excellence by developing an innovative Multi-fidelity dEep neural Network uncerTainty quantificatiOn and Robust optimization design (MENTOR) framework in order to handle the high dimensionality (HD) uncertain problems in the advanced multistage turbomachinery design process. The applicant is a highly dedicated and motivated young researcher and has been stimulated to propose this novel idea. He has been successively honoured with several prestigious awards including the National Scholarship for PhD Candidate, Excellent PhD Graduates of Beijing, Excellent Doctoral Dissertations Award of Beijing and ASME Young Engineer Turbo Expo Travel Award attributed to his excellent research achievement in cost-efficient uncertainty quantification (UQ) studies.
The traditional UQ methods can hardly control the computation cost for predicting the higher-order moments of multistage turbomachinery performance considering HD input uncertainties. The deep learning technology is a promising approximator in predicting the HD function. Integration of multi-fidelity (MF) methodology with deep neural network (DNN) can further combine their complementary merits. Thus, the novel MF-DNN method is proposed here and its effectiveness in handling a 60-dimensional test function has been preliminarily validated in the Incoming Researcher's recent work. Through this research fellowship, an affordable MENTOR framework will be finally established to investigate the multi-source uncertainty effects on multistage turbomachinery performance. This project has been carefully designed to match the applicant's profile with the strength of Imperial's UQ Lab, and thus will facilitate excellent two-way knowledge transfer and training activities. Successful completion of this fellowship will contribute to achieving the goal of the EU's ""Green Deal"" and will benefit the applicant's academic career prospect."

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) H2020-MSCA-IF-2020

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 212 933,76
Adresse
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
Vereinigtes Königreich

Auf der Karte ansehen

Region
London Inner London — West Westminster
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 212 933,76
Mein Booklet 0 0