Project description
Delving into the immune mechanism of antiviral control
The immune system has evolved a DNA-sensing mechanism that allows it to respond to viruses and even target cancer cells. This mechanism involves the activation of cyclic GMP–AMP synthase (cGAS), which subsequently interacts with the stimulator of interferon genes (STING) effector to initiate immune response. The key objective of the EU-funded STARPAC project is to dissect the complex process of STING activation and function and identify the key players. Moreover, researchers wish to delineate how STING activation is implicated in the identification and tackling of RNA viruses. Results have the potential to identify novel targets for the design of antiviral strategies.
Objective
The immune response to cytosolic DNA is crucial for preventing tumour formation and virus infection. This response critically depends on the cGAS-STING pathway, which detects cytosolic self-DNA present in tumour cells and viral DNA. STING can also detect cytosolic self-DNA induced by upon RNA virus infections, and numerous RNA viruses have evolved strategies to disable STING.
STING activation is a complex process that requires various post-translational modifications, leading to STING trafficking and activation at the Golgi apparatus. STING activation induces the transcription of genes that promote immune cell recruitment. Aberrant STING regulation may lead to virus infections, inflammatory disorders, and tumour formation.
Many of the regulators involved in STING activation are unknown. To identify host factors regulating STING activity, I recently performed a genome-wide CRISPRi screen (Luteijn et al, 2019, Nature). I found many novel genes involved in STING activation, including the Golgi protein ACBD3. This protein localizes the phospholipid phosphatidylinositol 4-phosohate (PI4P) to the Golgi membrane by recruiting the PI4P kinase PI4KB.
My preliminary work revealed that STING activation in the Golgi critically depends on ACBD3 and PI4P. Remarkably, ACBD3 and other PI4P-associated factors are also targeted during infection by certain RNA viruses.
It is completely unknown how ACBD3 and PI4P distribution affect STING activity, and if PI4P hijacking by RNA viruses modifies the STING-induced immune response.
This project has 3 main objectives:
1. Define the role of ACBD3 and PI4KB expression and function on STING activation
2. Identify and target regulators of PI4P biology to increase STING activity
3. Define the role of PI4P hijacking by RNA viruses on STING immune evasion
Understanding how ACBD3 and other PI4P-associated factors regulate STING will lead to the identification of novel therapeutic targets to combat tumours, virus infections, and inflammation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences health sciences infectious diseases RNA viruses
- natural sciences biological sciences microbiology virology
- natural sciences biological sciences genetics DNA
- medical and health sciences basic medicine immunology
- natural sciences biological sciences genetics RNA
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3584 CS Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.