Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Learn to learn human learning process from teleoperated demonstrations

Description du projet

Cadre innovant d’apprentissage des compétences des robots

L’apprentissage par la démonstration (LfD) est un modèle permettant aux robots d’apprendre de manière autonome à effectuer de nouvelles tâches. Les changements environnementaux, les coûts élevés des démonstrations et les incertitudes potentielles dues à l’apprentissage basé sur les données limitent toutefois son application. Le projet L3TD financé par l’UE proposera un cadre d’apprentissage des compétences des robots basé sur le processus d’apprentissage humain afin d’atteindre des caractéristiques d’apprentissage des compétences semblables à celles des humains. Le projet équipera une interface téléopérée de multicapteurs et d’un exosquelette spécial afin de minimiser la différence d’information entre les humains et les robots, d’explorer de nouvelles théories d’apprentissage de compétences primitives (CP) et d’apprentissage de tâches à partir de graphes basé sur les CP, d’apprendre et de généraliser les CP pour permettre un raisonnement en cas d’échec et une adaptation à des tâches peu ou pas documentées.

Objectif

Learning from demonstration (LfD) is a paradigm for enabling robots to autonomously learn from demos to perform new tasks. But, environmental changes, expensive demonstration cost, and potential uncertainties caused by data-based learning make it hard to be applied in actual. The project aims to propose a robot skill learning framework from human learning process via a teleoperation interface to achieve human-like skill learning characteristics such as few-shot learning, learning from failed attempts and tentative actions, and strong skill transfer and generalization ability. Five work packages will be taken to realize the objectives. First, a teleoperated interface will be equipped with multi-sensors and special exoskeleton to minimize information difference between humans and robots. After building a scalable primitive skill (PS) library based on task segmentation with multimodal information, new theories of PS learning and PS-based task graph learning are explored. PS will be learned and generalized based on improved meta-learning that is associated and explained by physical laws and neural motor disciplines. The PS-based task graph will be learned from the human learning process, achieving failure reasoning and adaptation to zero/few-shot tasks. Some practical problems e.g. incomplete data set and difference of sim-to-real applications will also be addressed. Finally, the previous theories will be certified by medical robot tasks. The applicant will acquire a solid state-of-the-art interdisciplinary scientific training in the multidisciplinary research fields, such as artificial intelligence, robotics technologies and mechanical design, and that will enable him to generate new scientific knowledge and quickly develop his research career and leadership. The final aim is to consolidate Europe as the world leader in robot and AI areas and to benefit European robotics applications in industry, surgery, and nuclear waste disposition.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2020

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITY OF THE WEST OF ENGLAND, BRISTOL
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 168 700,32
Adresse
Frenchay Campus, Coldharbour Lane
BS16 1QY BRISTOL
Royaume-Uni

Voir sur la carte

Région
South West (England) Gloucestershire, Wiltshire and Bristol/Bath area Bath and North East Somerset, North Somerset and South Gloucestershire
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 168 700,32
Mon livret 0 0