Skip to main content

ATTOsecond Spectro-microscopies for Photoresist Improvement and Efficacy

Objective

After more than 40 years of development, the semiconductor industry is currently experiencing a paradigm shift as it transitions from deep ultraviolet (UV) to extreme UV (EUV) lithography for high-volume manufacturing (HVM) of integrated circuits (ICs) to ensure further device scaling to the future technology nodes. However, integration of EUV lithographic scanners in HVM pipelines has been stymied by an incomplete knowledge of the in-situ photoresist radiochemistry that occurs during EUV exposure, which has prevented engineering of photoresists to reduce stochastic print failures and subsequent device failure rates. The proposed action, ATTOsecond Spectromicroscopies for Photoresist Improvement and Efficacy (ATTO-SPIE) will bridge this knowledge gap by developing and deploying spatiotemporal metrologies that can track the in-situ electro-chemical dynamics occurring during EUV exposure.
ATTO-SPIE will capitalise on the Experienced Researcher’s (ER) expertise on the generation and use of attosecond EUV light for time-resolved spectroscopies, as well as the knowhow of an experienced team of complementary supervisors and a state-of-the-art attosecond metrology lab (AttoLab) located in a world-leading semiconductor R&D hub (IMEC) to develop new metrology techniques that will enable resolution of the EUV exposure mechanism. This ambitious aim will be accomplished via three thrusts: i) quantification of EUV exposure kinetics in photoresists, ii) ultrafast spectroscopies to track transient chemical dynamics of EUV exposure, and iii) in-situ spatiotemporal photoelectron microscopies, all of which will be key for unraveling the complexities of the EUV exposure mechanism. The results of ATTO-SPIE will not only provide new metrology tools for photoresist research, but also stimulate new avenues in ultrafast metrologies for the semiconductor industry, while also enhancing the career potential of the ER and increasing the current knowledge base of resist radiation chemistry.

Field of science

  • /natural sciences/chemical sciences/analytical chemistry/spectroscopy
  • /natural sciences/chemical sciences/nuclear chemistry/radiation chemistry
  • /natural sciences/physical sciences/electromagnetism and electronics/electrical conductivity/semiconductor
  • /natural sciences/chemical sciences/nuclear chemistry/radiochemistry

Call for proposal

H2020-MSCA-IF-2020
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF

Coordinator

INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
Address
Kapeldreef 75
3001 Leuven
Belgium
Activity type
Research Organisations
EU contribution
€ 166 320