Descripción del proyecto
El análisis de células bacterianas individuales podría ayudar a aumentar la producción de metano
Cuando los microorganismos se alimentan de materia orgánica en ausencia de oxígeno o aire, su proceso de digestión (denominada digestión anaerobia) da lugar a biogás, compuesto principalmente por metano. Emplear bacterias para producir combustibles a partir de los desechos orgánicos de la sociedad favorece la transición desde los combustibles fósiles hasta formas de energía más limpias y con menos emisiones. Con todo, las bacterias necesitan un poco de ayuda para producir combustibles en cantidades que den lugar a procesos rentables en los que merezca la pena invertir. En el proyecto UnrAD, financiado con fondos europeos, se emplean métodos de genética de célula única de alta tecnología para caracterizar diferentes miembros de la comunidad bacteriana a fin de identificar especializaciones e interacciones relevantes para la producción de metano, que podrían ayudar a aumentar su rendimiento.
Objetivo
Anaerobic digestion, a technology able to use waste residuals to produce clean renewable energy in form of methane, is a powerful tool to revert the unequivocal environmental deterioration and represent one of the clearest examples of how research and innovation can turn undesirable residual like waste into an ecological and economical asset. Recent advances made feasible the process at ambient temperature, feasibility that might increase the net production since does not need heat supplementation. Among the different trace metals involved in the anaerobic degradation processes, cobalt has been shown one of the most important since it acts as a cofactor for enzymes involved in the metabolic pathways of the methanogenesis from acetate. Therefore an adequate balance of cobalt could improve the anaerobic biological response, enhancing the rate and yield of methane. High throughput single-cell transcriptomic and third generation sequencing provide an unprecedented opportunity to understand the mechanisms inducing this enhanced yield. The first allows trancriptome analysis at the level of individual cells giving the possibility to understand the interplay of transcripts within single organisms, the specialization of different members from the community or the heterogeneity in term of transcriptomic status of every species while the second enable the possibility recover full length transcripts increasing resolution. The overall objective of UnrAD is to employ these two cutting-edge technologies combined to study the role of temperature and cobalt supplementation in anaerobic digestion and identify specializations and interactions among the different bacterial community members. The findings from this project would lead to a more efficient anaerobic digestion and will be beneficial for the to the industries in the field and the whole society.
Ámbito científico
Not validated
Not validated
Palabras clave
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
28006 Madrid
España