Description du projet
Le profilage des cellules bactériennes individuelles pourrait nous aider à augmenter la production de méthane
Lorsque les micro-organismes se nourrissent de matières organiques en l’absence d’oxygène ou d’air, leur processus de digestion (appelé «digestion anaérobie») produit du biogaz, qui est principalement du méthane. L’exploitation des microbes pour produire des carburants à partir de nos déchets organiques favorise notre transition vers des formes d’énergie plus propres et moins polluantes que les combustibles fossiles. Toutefois, les bactéries ont besoin d’un coup de pouce pour produire des carburants en quantités suffisantes qui permettent d’obtenir des processus rentables et dignes d’investissement. Le projet UnrAD, financé par l’UE, utilise des approches génétiques unicellulaires de haute technologie pour caractériser les différents membres de la communauté bactérienne. La découverte de spécialisations et d’interactions pertinentes pour la production de méthane pourrait nous aider à les aider à augmenter leur rendement.
Objectif
Anaerobic digestion, a technology able to use waste residuals to produce clean renewable energy in form of methane, is a powerful tool to revert the unequivocal environmental deterioration and represent one of the clearest examples of how research and innovation can turn undesirable residual like waste into an ecological and economical asset. Recent advances made feasible the process at ambient temperature, feasibility that might increase the net production since does not need heat supplementation. Among the different trace metals involved in the anaerobic degradation processes, cobalt has been shown one of the most important since it acts as a cofactor for enzymes involved in the metabolic pathways of the methanogenesis from acetate. Therefore an adequate balance of cobalt could improve the anaerobic biological response, enhancing the rate and yield of methane. High throughput single-cell transcriptomic and third generation sequencing provide an unprecedented opportunity to understand the mechanisms inducing this enhanced yield. The first allows trancriptome analysis at the level of individual cells giving the possibility to understand the interplay of transcripts within single organisms, the specialization of different members from the community or the heterogeneity in term of transcriptomic status of every species while the second enable the possibility recover full length transcripts increasing resolution. The overall objective of UnrAD is to employ these two cutting-edge technologies combined to study the role of temperature and cobalt supplementation in anaerobic digestion and identify specializations and interactions among the different bacterial community members. The findings from this project would lead to a more efficient anaerobic digestion and will be beneficial for the to the industries in the field and the whole society.
Champ scientifique
Programme(s)
Régime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
28006 Madrid
Espagne