Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Engineering of Superfluorescent Nanocrystal Solids

Descripción del proyecto

Nanocristales emisores de luz son prometedores para aplicaciones cuánticas

La superfluorescencia describe la emisión colectiva de luz fluorescente por un conjunto de átomos o iones excitados. Recientemente, investigaciones han demostrado que los nanocristales de perovskita de haluro de plomo pueden ensamblarse en superredes altamente ordenadas que presentan superfluorescencia. Aunque este inusual fenómeno óptico hace que este material sea adecuado para su uso en fuentes de luz cuántica, su origen exacto ha sido un tema de debate. En el proyecto PROMETHEUS, financiado con fondos europeos, se combinarán nanoquímica, espectroscopia y óptica cuántica para mejorar los conocimientos en este campo. El innovador concepto de PROMETHEUS se basa en el desarrollo de sólidos de nanocristales acoplados a la luz con interacciones modificadas entre la luz y la materia. Se espera que estos materiales amplíen las aplicaciones de los nanocristales emisores de cualquier forma y material (no solo las perovskitas de haluro metálico) en las tecnologías cuánticas.

Objetivo

The time is right for light-emitting colloidal nanocrystals to meet the demands of the second quantum revolution. The cooperative emission (superfluorescence) was recently observed in the micron-sized solids of colloidal lead halide perovskite nanocrystals, offering a path to low-cost, solution-processed sources of bright and coherent light. Superfluorescence, characterized by high-intensity and ultrashort bursts of indistinguishable photons, makes nanocrystal solids desired targets for photonics and quantum information applications. However, the exact origin of the superfluorescence is debated, and the rules of nanomaterial design for on-demand cooperativity are unknown.
PROMETHEUS tackles these issues by combining nanochemistry with spectroscopy and tools of quantum optics. The project's approach consists of 1) synthesis and judicious selection of emissive metal halide nanocrystals with minimal exciton energy inhomogeneity, 2) accelerated self-assembly of nanocrystals into binary solids with a tunable fraction of emitters, 3) cryogenic micro-photoluminescence spectroscopy at the level of individual nanocrystal solids. The control of the coupling between emissive nanocrystals is achieved by diluting optically-dense nanocrystal solids with a second, transparent nanocrystal component. Measurements of spectroscopic observables, coherence, and photon statistics on single nanocrystal solids are used to dissect the roots and properties of cooperative emission.
The project introduces a concept of light-coupled nanocrystal solids where light-matter interactions are engineered through structure and composition. This concept goes beyond metal halides and applies to emissive nanocrystals of any shape, opening a class of colloidal nanomaterials with light emission controllable between single-particle and many-body regimes. Such materials are expected to expand applications of emissive nanocrystals in quantum technologies and yield new uses in materials science.

Institución de acogida

LUNDS UNIVERSITET
Aportación neta de la UEn
€ 1 875 938,00
Dirección
Paradisgatan 5c
22100 Lund
Suecia

Ver en el mapa

Región
Södra Sverige Sydsverige Skåne län
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 875 938,00

Beneficiarios (2)