Description du projet
Faire progresser les technologies de l’information grâce à la magnonique moléculaire 2D intelligente
Les matériaux magnétiques bidimensionnels (2D) de van der Waals constituent des blocs de construction inédits permettant de transmettre, stocker et traiter des informations en utilisant des ondes de spin (dont les quanta sont appelés magnons) à la limite de nos capacités de miniaturisation. Le projet 2D-SMARTiES, financé par le CER, appliquera une approche chimique pour développer une nouvelle génération de dispositifs magnoniques basés sur des hétérostructures hybrides moléculaires/2D dans lesquelles la manipulation externe de molécules sensibles aux stimuli permet de contrôler précisément la dynamique du spin. Il établira un cadre théorique et computationnel efficace pour guider les efforts de synthèse visant à créer des nanodispositifs à faible consommation d’énergie et hautement ajustables, destinés aux technologies de l’information. 2D-SMARTiES inaugurera un nouveau domaine interdisciplinaire, la magnonique moléculaire 2D, qui aura un impact sur la nanoscience moléculaire, la physique de l’état solide et la science des matériaux.
Objectif
The final goal of 2D-SMARTiES is to develop a new generation of magnonic devices based on hybrid molecular/2D heterostructures in which a precise control of the spin dynamics can be achieved by external manipulation of stimuli-responsive molecules. With this aim in mind, the project will establish an efficient theoretical and computational framework to guide the synthetic efforts towards the creation of low power consumption and highly tunable nanodevices for information technologies using a chemical approach.
The recent emergence of 2D van der Waals magnetic materials provides unprecedented building-blocks to transmit, storage and process information using spin waves, whose quanta are called magnons, at the limit of miniaturization. We will exploit the potential of switchable organic and spin crossover molecules to act as emitters, modulators and detectors of magnons at interfaces formed by this class of molecules and 2D antiferromagnets. This will open a versatile route based on smart molecules to face some of the current challenges in magnonics. In concrete, we will provide: (1) a more profound understanding of the hybridization of molecular orbitals on magnetic surfaces, as well as the effect of these hybridized states on the spin dynamics of 2D magnets; (2) a software package to model magnon dynamics in hybrid materials; (3) a deep analysis of strain-magnon coupling effects due to the thermal or light-induced spin switching in spin crossover systems deposited on 2D materials; (4) an efficient quantum transport code accounting for spin-orbit torque effects to understand the enhancement of properties in the 2D material when interfaced with a topological insulator; and (5) the creation of novel devices as a proof of concept. We envision the birth of a new interdisciplinary field, namely molecular 2D magnonics, with impact in molecular nanoscience, solid-state physics and materials science leading to promising long-term applications in information technologies.
Champ scientifique
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thème(s)
Régime de financement
HORIZON-ERC - HORIZON ERC GrantsInstitution d’accueil
46010 Valencia
Espagne