Project description
Bacteria that love extremes could boost production of solvents
Microbes are emerging as promising allies in our transition to greener energy, producing many valuable chemicals with the help of synthetic biology and metabolic engineering. However, ramping up production is challenged by the toxicity of the produced chemicals to ordinary production microbes. Pseudomonas may not have this issue. It is an extremophile, an organism that can survive extreme environments. The EU-funded PROSPER project will engineer this robust organism in such a way that it will provide a virtually endless product sink of hydrophobic solvents such as styrene and benzene using a novel approach that has never been demonstrated.
Objective
Replacement of fossil chemicals with biological counterparts has been widely accepted as a vital pursuit to increase the sustainability of our chemical and material industries. Synthetic biology and metabolic engineering enable us to produce a plethora of chemicals with microbes, but the majority of these never make it past the proof-of-principle stage. This is especially the case for drop-in bulk aromatics like styrene or benzene. The main reason for this is that such products are too toxic to ordinary production microbes.
In PROSPER I aim to overcome this hurdle and demonstrate the efficient microbial production of hydrophobic aromatic chemicals using solvent-tolerant Pseudomonas. I will engineer this unique extremophile to break the solubility barrier of these chemicals, forming a second phase of product. This second phase provides a virtually endless product sink and it enables extremely simple downstream recovery.
The bio-based production of a second phase of such chemicals has thus far never been shown. I believe that this relates to a fundamental problem in biotechnology: production tolerance, i.e. tolerance of the producing organism to the produced product, rather than to an externally added chemical (as it is usually studied). In PROSPER I intend to generate deep mechanistic insights into the processes governing both types of tolerance and to leverage these insights to open up a new field of biotechnological production of hydrophobic compounds. To achieve this, I will develop new methods to analyze intracellular solvent concentrations, build a Pseudomonas chassis with enhanced production tolerance to hydrophobic solvents, and enable production of solvents like styrene, ethylbenzene, and even benzene.
I am in a unique position to achieve this goal, with over 15 years of experience in the engineering of Pseudomonas as a workhorse in biotechnology, the study of solvent-tolerance, and the development and application of synthetic biology tools and metho
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
52428 JULICH
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.