Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Holomorphic Partial Differential Relations

Project description

Oka manifolds under study

Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. Oka manifolds are a new class of complex manifolds whose essential feature is that they allow an abundance of holomorphic mappings from affine complex manifolds. Holomorphic mappings are important because they occur naturally in physical problems. The EU-funded HPDR project aims to further investigate the properties of Oka manifolds and their application to a wide variety of problems in complex geometry.

Objective

The aim is to develop an emerging field of complex analysis and geometry focused on holomorphic partial differential relations (HPDR). Such a relation of order r is given by a subset of the manifold of r-jets of holomorphic maps between a pair of complex manifolds, and the main question is when does a formal solution lead to an honest analytic solution. This complex analogue of Gromov’s h-principle is highly important but poorly understood. The project will focus on the following problems.

(A) Oka theory concerns the existence and approximation of holomorphic maps from Stein manifolds to complex manifolds, corresponding to HPDRs of order zero. The central notion of Oka theory is Oka manifold; this is a complex manifold such that the h-principle holds for maps from any Stein manifold into it. Recently developed techniques give a promise of major new developments on Oka manifolds and their applications to a variety of problems in complex geometry. 


(B) Open first order HPDRs. Oka-theoretic methods will be applied in problems concerning holomorphic immersions and locally biholomorphic maps.

(C) First order HPDRs defined by analytic varieties in the jet bundle. Application of Oka-theoretic methods in holomorphic directed systems, with emphasis on complex contact manifolds and holomorphic Legendrian curves.

(D) Applications of Oka theory to minimal surfaces. Development of hyperbolicity theory for minimal surfaces. The Calabi-Yau problem for minimal surfaces in general Riemannian manifolds. Study of superminimal surfaces in self-dual Einstein four-manifolds via the Penrose-Bryant correspondence. 


These closely interrelated topics embrace major open problems in three fields, with diverse applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-ADG

See all projects funded under this call

Host institution

UNIVERZA V LJUBLJANI
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 166 282,50
Address
KONGRESNI TRG 12
1000 Ljubljana
Slovenia

See on map

Region
Slovenija Zahodna Slovenija Osrednjeslovenska
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 166 282,50

Beneficiaries (2)

My booklet 0 0