Descrizione del progetto
Varietà di Oka in fase di studio
La teoria di Oka rappresenta il campo dell’analisi complessa alle prese con problemi globali sulle varietà di Stein che ammettono soluzioni analitiche in assenza di ostacoli topologici. Le varietà di Oka sono una nuova classe di varietà complesse la cui caratteristica essenziale è che consentono grandi quantità di mappature olomorfiche da varietà affini complesse. Le mappature olomorfiche sono importanti, in quanto si verificano naturalmente nei problemi fisici. Il progetto HPDR, finanziato dall’UE, intende studiare ulteriormente le proprietà delle varietà di Oka e la loro applicazione a un’ampia varietà di problemi di geometria complessa.
Obiettivo
The aim is to develop an emerging field of complex analysis and geometry focused on holomorphic partial differential relations (HPDR). Such a relation of order r is given by a subset of the manifold of r-jets of holomorphic maps between a pair of complex manifolds, and the main question is when does a formal solution lead to an honest analytic solution. This complex analogue of Gromov’s h-principle is highly important but poorly understood. The project will focus on the following problems.
(A) Oka theory concerns the existence and approximation of holomorphic maps from Stein manifolds to complex manifolds, corresponding to HPDRs of order zero. The central notion of Oka theory is Oka manifold; this is a complex manifold such that the h-principle holds for maps from any Stein manifold into it. Recently developed techniques give a promise of major new developments on Oka manifolds and their applications to a variety of problems in complex geometry.
(B) Open first order HPDRs. Oka-theoretic methods will be applied in problems concerning holomorphic immersions and locally biholomorphic maps.
(C) First order HPDRs defined by analytic varieties in the jet bundle. Application of Oka-theoretic methods in holomorphic directed systems, with emphasis on complex contact manifolds and holomorphic Legendrian curves.
(D) Applications of Oka theory to minimal surfaces. Development of hyperbolicity theory for minimal surfaces. The Calabi-Yau problem for minimal surfaces in general Riemannian manifolds. Study of superminimal surfaces in self-dual Einstein four-manifolds via the Penrose-Bryant correspondence.
These closely interrelated topics embrace major open problems in three fields, with diverse applications.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-ERC - HORIZON ERC Grants
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2021-ADG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
1000 Ljubljana
Slovenia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.