Description du projet
Un coup de pouce pour les batteries à flux redox à base de polymères
La réussite de la transition énergétique de l’UE dépend de l’efficacité avec laquelle l’énergie électrique peut être stockée. Il s’agit de l’un des aspect les plus critiques, qui permet d’intégrer les ressources renouvelables fluctuantes dans la charge de base. Les batteries à flux redox (RFB pour «redox flow battery») sont une technologie de stockage d’énergie prometteuse. Fortes de leur capacité à faire fluctuer puissance et capacité de manière indépendante, ces batteries conviennent tout particulièrement aux applications fixes à grande échelle. Dans ce contexte, le projet FutureBAT, financé par l’UE, mettra au point de nouveaux matériaux actifs organiques destinés aux RFB qui permettront d’en accroître l’efficacité, la capacité, la durée de vie et la stabilité thermique. FutureBAT s’intéressera aux structures polymères avancées, aux systèmes colloïdaux et aux systèmes organiques hybrides dans sa quête pour de nouveaux RFB photo-rechargeables et de RFB renfermant toutes les espèces chargées dans un seul réservoir.
Objectif
The efficient storage of electric energy represents a major challenge for a successful energy transition, enabling the utilization of fluctuating renewable resources also as base load. Redox-flow-batteries (RFBs) are the only type of battery where intrinsically power and capacity can be varied independently from each other, making this type of battery perfectly suited for scalable stationary applications.
RFBs based on aqueous electrolytes with organic / polymer active materials have the potential to be suitable alternatives for commercial metal-based RFBs, with low CO2 footprint perfectly fitting to the goals of the EU Green Deal.
In particular, polymer-based RFB systems enable the use of cost-efficient dialysis membranes together with pH neutral table salt solutions as electrolytes. Nevertheless, systems still reveal restrictions in terms of capacity, lifetime and temperature-stability.
FutureBAT targets a breakthrough in the development of novel organic active materials for RFBs, by combining the search for new active entities with the improvement of current polymeric materials on the molecular level, by this providing new functions / properties. The key question will be how far polymeric electrolytes can be tuned by adjusting the molecular structure. Advanced polymer structures (incl. (hyper-) branched structures) and colloidal systems (with varied morphologies) as well as novel hybrid organic systems will provide access to hitherto unknown properties, e.g. new photo-rechargeable RFBs or RFBs having all charged species within one single tank. Furthermore, new sensor systems (SOC and SOH) will be applied, which also will form the basis for novel 3D-printed lab cells for (high-throughput) screening.
As the outcome, pioneering breakthroughs in the field of polymer-based RFBs will be enabled, surely targeting high risk / high gain step-changing research but built up on the know-how of one of the leading international research teams in this rather new field.
Champ scientifique
Not validated
Not validated
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringelectric energy
- natural sciencesphysical sciencescondensed matter physicssoft matter physics
- natural scienceschemical sciencespolymer sciences
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- social scienceseconomics and businesseconomicssustainable economy
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thème(s)
Régime de financement
HORIZON-ERC - HORIZON ERC GrantsInstitution d’accueil
07743 JENA
Allemagne