European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Cold Organic Chemistry

Descrizione del progetto

Approfondire le reazioni chimiche organiche a basse temperature

Le reazioni sono ostacolate da barriere fisico-chimiche che ne impediscono il progresso e i catalizzatori sono utilizzati sistematicamente per superare molte di esse. Anche il calore viene spesso applicato per accelerare le reazioni grazie a un maggior movimento delle particelle e al crescente numero delle relative collisioni. Negli angoli remoti dello spazio e in condizioni di freddo estremo, le molecole organiche si formano senza questo tipo di aiuti. Secondo una delle teorie formulate per spiegare tale fenomeno, risulterebbe fondamentale una combinazione dell’effetto tunnel meccanico quantistico e di nuove reazioni caratterizzate da barriere eccezionalmente basse. Il progetto COLDOC, finanziato dall’UE, sta valutando questa ipotesi attraverso indagini che sveleranno il modo in cui l’effetto tunnel meccanico quantistico controlla la reattività e la selettività a livello chimico. Tutto ciò sarà integrato dalla sintesi organica in condizioni criogeniche, in modo da selezionare i complessi di interesse.

Obiettivo

This proposal ventures into organic chemical reactions under not-so-common conditions, namely in the cold, at insufficient energies, and under the action of hard radiation. As many organic molecules have been discovered in space or brought to earth in meteorites, they must have formed under such conditions through hitherto largely undisclosed mechanisms. One key hypothesis is that quantum-mechanical tunneling (QMT) and novel reactions with exceptionally low barriers are at work. Hence, one of the key objectives is to uncover how QMT, where reactions occur through and not over barriers, controls chemical reactivity and selectivity. A second goal is the examination of cryogenic reactions of hydroxycarbenes or enols with carbonyl compounds. Our methods include organic synthesis of starting materials (also isotopically labelled) and products, infrared as well as ultaviolet/visible matrix-isolation spectroscopy, ab initio computations of structures, spectra, and potential energy surfaces as well as QMT rate calculations. We will examine isotope-selective reactions of competing QMT reactions that can be made selective through strategic isotope incorporation. QMT also offers new ways to activate carbon dioxide and even to catalyze reactions. We propose a unifying synthesis of carbohydrates and alpha-amino acids through a common mechanistic scenario, namely a newly discovered hetero-carbonyl-ene reaction of carbenes or enols in the gas phase. Finally, chemistry far from thermodynamic equilibrium is explored with probing the activation and reaction of highly stable molecules under irradiation with energetic electrons, thereby mimicking conditions of the interstellar medium exposed to galactic cosmic rays. This should shed light on the formation of larger “complex organic molecules” found in this medium and often considered as building blocks for life.

Istituzione ospitante

JUSTUS-LIEBIG-UNIVERSITAET GIESSEN
Contribution nette de l'UE
€ 2 493 529,00
Indirizzo
LUDWIGSTRASSE 23
35390 Giessen
Germania

Mostra sulla mappa

Regione
Hessen Gießen Gießen, Landkreis
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 2 493 529,00

Beneficiari (1)