Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Learning and modeling the molecular response of single cells to drug perturbations

Descripción del proyecto

Modelización basada en aprendizaje automático de las respuestas unicelulares ante perturbaciones asociadas a fármacos

El equipo del proyecto DeepCell, financiado con fondos europeos, tiene como objetivo desarrollar un modelo sistémico del comportamiento celular ante las perturbaciones inducidas por fármacos mediante lecturas genómicas unicelulares y el aprendizaje automático. El estudio preliminar demostró la posibilidad de predecir los cambios de expresión génica de un conjunto de células en respuesta a estímulos. Un grupo de investigadores aplicará una metodología de aprendizaje profundo multicondición y multimodal para la resolución genómica normal y espacial, a fin de crear un modelo para la respuesta de la expresión celular ante diversas perturbaciones. La flexibilidad del modelo actual permitirá analizar los efectos de los estímulos farmacológicos combinados y caracterizar el panorama regulador génico. Como prueba de concepto, el modelo se utilizará para identificar dianas que regulen la selección del linaje enteroendocrino en el intestino.

Objetivo

Advances in single-cell genomics (SCG) allow us to read out a cell’s molecular state with unprecedented detail, increasingly so across perturbations. To fully understand a cellular system, one must be able to predict its internal state in response to all perturbations. Yet such modeling in SCG is currently limited to descriptive statistics. Building upon my expertise in machine learning, I propose to systematically model a cell’s behavior under perturbation, focusing on the largely untouched area of drug-induced perturbations with multiomics SCG readouts. A sufficiently generic model will predict perturbed cellular states, enabling the design of optimal treatments in new cell-types.
In a pilot study, we predicted gene expression changes of a cell ensemble in response to stimuli. DeepCell builds upon this approach: Based on a multi-condition, multi-modal deep-learning approach for both normal and spatially-resolved genomics, we will set up a constrained, interpretable model for the cellular expression response to diverse perturbations. The added flexibility of the DeepCell model versus classical small-scale systems biology models will allow us to interrogate the effects of combined drug stimuli and characterize the gene regulatory landscape by interpretation of the learned deep network.
DeepCell provides unique possibilities to capitalize on cell-based drug screens to address fundamental questions in gene regulation and predicting treatment outcomes. As a proof of concept, I will identify targets that regulate enteroendocrine lineage selection in the intestine. I will set up a 500-compound single-cell organoid RNA-seq screen based on compounds from a spatial imaging screen across 200,000 intestinal organoids, both of which we will model with DeepCell. We will leverage those models to predict optimal treatment for obese mice.
DeepCell opens up the possibility of in silico drug screens, with the potential to expedite drug discovery and impact clinical settings.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2021-ADG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 2 103 910,50
Dirección
INGOLSTADTER LANDSTRASSE 1
85764 Neuherberg
Alemania

Ver en el mapa

Región
Bayern Oberbayern München, Landkreis
Tipo de actividad
Research Organisations
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 2 103 910,50

Beneficiarios (2)

Socios (1)

Mi folleto 0 0