Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Low radon and low internal radioactivity for dark matter and rare event xenon detectors

Projektbeschreibung

Neue Dimensionen bei der Erkennung dunkler Materie

Zwei bedeutende Kooperationen – XENON/DARWIN und LUX-ZEPLIN (Flüssig-Xenon-Detektoren) –, die sich mit der Erforschung dunkler Materie befassen, schließen sich zusammen, um einen Detektor der nächsten Generation für dunkle Materie zu entwickeln. Dieser Detektor soll außerdem für andere seltene physikalische Prozesse empfänglich sein, wie etwa den neutrinolosen doppelten Betazerfall, solare Neutrinos, Axionen und so weiter. Trotz der Existenz von Abschirmungssystemen für Myonen oder Neutronen ist die Empfindlichkeit beider Detektoren durch den radioaktiven Zerfall des Xenons, insbesondere der radioaktiven Edelgasisotope 222Rn und 85Kr, begrenzt. Im Rahmen des EU-finanzierten Projekts LowRad werden kryogene Destillationsanlagen eingerichtet, um die Konzentrationen von 222Rn und 85Kr auf ein bisher nicht gekanntes Niveau zu senken. Dadurch soll ihr Hintergrundanteil am Detektor um den Faktor 10 reduziert werden.

Ziel

The astrophysical and cosmological evidence that the majority of matter in the universe must consist of exotic dark matter is overwhelming. But it is not yet clear what dark matter really is. Very promising candidates are WIMPs, the detection of which would also solve other pressing questions in particle physics. For the search for WIMPs, liquid xenon-based detectors are by far the most sensitive. The collaborations LZ, XENON and DARWIN joined to build a next generation detector, DARWIN/G3, with a sensitivity limited only by coherent neutrino scattering. Such a detector will not only search for dark matter, but will become an observatory for rare event searches (axions, solar neutrinos, neutrinoless double beta decay, ..).
Despite construction in underground laboratories and with further shielding or veto systems for muons or neutrons, the sensitivity of these detectors is limited by radioactive decays within the xenon, especially of the radioactive noble gas isotopes 222Rn and 85Kr, dominating the background of current xenon-based dark matter experiments. In this project we want to push the possibilities of cryogenic distillation to continuously reduce 222Rn and 85Kr to an unprecedented level of 1 atom per 100 mol of xenon (10 mol in case of 85Kr), which will make their background contributions at DARWIN/G3 to be a factor 10 smaller than that of the un-shieldable solar neutrinos. Our cryogenic distillation setups which obtain their cooling power from a novel heat pump concept offers the additional benefit of determining the impurity concentrations in-situ. We will integrate the novel distillation systems with the removal of electronegative impurities and their diagnostics into a compact cleaning system. Within LowRAD we aim to provide a complete quasi loss-less continuous 85Kr removal system ready for DARWIN/G3. In addition, we will explore how several important physics channels would become possible due to the extremely low 222Rn and 85Kr concentrations.

Programm/Programme

Gastgebende Einrichtung

UNIVERSITAET MUENSTER
Netto-EU-Beitrag
€ 3 495 575,00
Adresse
SCHLOSSPLATZ 2
48149 MUENSTER
Deutschland

Auf der Karte ansehen

Region
Nordrhein-Westfalen Münster Münster, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 3 495 575,00

Begünstigte (1)