Project description
Setting sail for carbon neutral ships
Conventional ship design cannot easily adopt most energy-saving innovations. Smart energy management is essential in a unified ship system, as the solution for carbon neutral ships is derived from several energy sources. The EU-funded OPTIWISE project proposes two solutions, which, when combined, deliver savings beyond 30 % when the innovations are delivered as proposed. This is in terms of wind propulsion with a rigorous, holistic optimised ship design, control, and operation, including a change in conventional propeller propulsion. The project will apply the combined solutions to 3 demonstration cases, a bulk carrier, a tanker, and a passenger vessel, and verify the results by testing a rotor sail rig, model tests on two ships, and bridge simulations with crew training.
Objective
The need to reduce energy consumption and emissions to bring global warming to a halt is unprecedented. Although there are energy saving strategies, most innovations cannot simply be merged in conventional ship design. As the solution for making ships carbon neutral will likely come from the use of several energy sources, a clever energy management becomes a key element in a unified ship system. De-rating of engines combined with sailing at slower speed seems to be a relatively easy way to reduce fuel consumption and GHG emissions and will most likely be used in the industry. However, this does come with reduced transport work per ship and reduced earnings. In our view, most other savings methods can deliver savings up to about 15%, not the substantial savings that are required. OPTIWISE aims at two solutions that when combined go well beyond 30% when the innovations are delivered as proposed in this project: Wind propulsion with a rigorous, holistic optimised ship design, control and operation, including a change in conventional propeller propulsion. Wind propulsion is showing its potential in research and market introductions. The holistic ship design and operation pair well with that. For common ships there is much to be gained, especially with the increased freedom in the aft ship geometry with a shift to electric propulsion. Making best use of wind propulsion also requires a rethink of designs, control and operations. To meet the objectives of this call, generic tool and methodology development are planned for optimization, performance and energy management. New developments will be applied to 3 Demo cases, consisting of a Bulk Carrier, a Tanker and a Passenger Vessel. Verification of the results will be done by testing a rotor sail rig, model tests on two ships and Bridge simulations with crew training. By the end of this project it will be clear how much energy can be save with the latest sail propulsion systems for the three types of vessels investigated
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics geometry
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.7 - Clean, Safe and Accessible Transport and Mobility
See all projects funded under this programme -
HORIZON.2.5.6 - Industrial Competitiveness in Transport
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2021-D5-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6708 PM Wageningen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.