Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Open collaboration and open Digital Twin infrastructure for Green Smart Shipping

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

DT4GS (Green Shipping) Dataspace v1 (si apre in una nuova finestra)

Connectors Module 1st Version, IoT infrastructure, Internal and External Connectors matching selected priority use cases. This deliverable includes the outputs of T2.2.

DT4GS Model Blueprints and Open Model Library v1 (si apre in una nuova finestra)

Model blueprints template, and optimised models, Open Model Library (OML) prototype. This deliverable includes the outputs of T2.4.

DT4GS knowledge Hub v1 (si apre in una nuova finestra)

Observatory for GS Solutions first release. This deliverable includes the outputs of T3.1.

DT4GS Edge and Orchestration Infrastructure v1 (si apre in una nuova finestra)

Cloud based infrastructure for services provisioning, deployable library on vessels. Hosting and orchestration services including tools for deployment automation. This deliverable includes the outputs of T2.5.

DT4GS modelling framework for ship operational performance optimisation including ship efficiency innovations (si apre in una nuova finestra)

Modelling Framework Specification, Navigation Management and hull models, Integrated Machinery Performance management and remote-control models, Integrated ship energy production models, Robust Fuel consumption models, and Life Cycle assessment Models. Model updates and Integrated modelling framework based on LL feedback. This deliverable includes the outputs of T1.2.

DT4GS Value-oriented Analysis in enabling Shipping Decarbonisation (si apre in una nuova finestra)

Value Oriented Analysis, LLs Scenarios, Transition Challenges, and high-level scenarios Requirements. This deliverable includes the outputs of T1.1.

Dissemination & Communication v1 (si apre in una nuova finestra)

Establish project communication and dissemination Strategy/Plan and report. This deliverable includes the outputs of T5.1.

Pubblicazioni

Knowledge Graphs underpinning ship digital twins for decarbonisation options assessment (si apre in una nuova finestra)

Autori: Bill Karakostas; Antonis Antonopoulos
Pubblicato in: International Marine Design Conference, 2024, ISSN 3050-4864
Editore: IMDC
DOI: 10.59490/IMDC.2024.871

Ship Design in the Era of Digital Transition (si apre in una nuova finestra)

Autori: Apostolos Papanikolaou, Evangelos Boulougouris, Stein-Ove Erikstad, Stefan Harries, Austin A. Kana
Pubblicato in: International Marine Design Conference, 2024, ISSN 3050-4864
Editore: TU Delft OPEN Publishing
DOI: 10.59490/IMDC.2024.784

Marine Voyage Optimization and Weather Routing with Deep Reinforcement Learning (si apre in una nuova finestra)

Autori: Charilaos Latinopoulos, Efstathios Zavvos, Dimitrios Kaklis, Veerle Leemen, Aristides Halatsis
Pubblicato in: Journal of Marine Science and Engineering, Numero 13, 2025, ISSN 2077-1312
Editore: MDPI AG
DOI: 10.3390/JMSE13050902

Trajectory Mining and Routing: A Cross-Sectoral Approach (si apre in una nuova finestra)

Autori: Dimitrios Kaklis; Ioannis Kontopoulos; Iraklis Varlamis; Ioannis Z. Emiris; Takis Varelas
Pubblicato in: Journal of Marine Science and Engineering, 2024, ISSN 2077-1312
Editore: MDPI
DOI: 10.3390/JMSE12010157

Digital twin for ship life-cycle: A critical systematic review (si apre in una nuova finestra)

Autori: F. Mauro, A.A. Kana
Pubblicato in: Ocean Engineering, Numero Article 113479, 2023, ISSN 0029-8018
Editore: Pergamon Press Ltd.
DOI: 10.1016/j.oceaneng.2022.113479

Marine Voyage Optimization and Weather Routing with Deep Reinforcement Learning (si apre in una nuova finestra)

Autori: Charilaos Latinopoulos, Efstathios Zavvos, Dimitrios Kaklis, Veerle Leemen, Aristides Halatsis
Pubblicato in: Journal of Marine Science and Engineering, Numero 13, 2025, ISSN 2077-1312
Editore: MDPI AG
DOI: 10.3390/JMSE13050902

Agentic AI for Digital Twin (si apre in una nuova finestra)

Autori: Alexander Timms, Abigail Langbridge, Antonis Antonopoulos, Antonis Mygiakis, Eleni Voulgari, Fearghal O'Donncha
Pubblicato in: Proceedings of the AAAI Conference on Artificial Intelligence, Numero 39, 2025, ISSN 2374-3468
Editore: Association for the Advancement of Artificial Intelligence (AAAI)
DOI: 10.1609/AAAI.V39I28.35373

Enabling digital twins in the maritime sector through the lens of AI and industry 4.0 (si apre in una nuova finestra)

Autori: Dimitrios Kaklis, Iraklis Varlamis, George Giannakopoulos, Takis J. Varelas, Constantine D. Spyropoulos
Pubblicato in: International Journal of Information Management Data Insights, Numero Article 100178, 2023, ISSN 2667-0968
Editore: Elsevier Ltd
DOI: 10.1016/J.JJIMEI.2023.100178

Retrofit modeling for green ships (si apre in una nuova finestra)

Autori: Julien J. M. Hermans; Austin A. Kana
Pubblicato in: International Marine Design Conference, 2024, ISSN 3050-4864
Editore: IMDC
DOI: 10.59490/IMDC.2024.890

Agentic AI for ship routing (si apre in una nuova finestra)

Autori: Fearghal O'Donncha, Abigail Langbridge, Alexander Timms, Antonis Antonopoulos, Antonis Mygiakis, Eleni Voulgari
Pubblicato in: 2025
Editore: Copernicus GmbH
DOI: 10.5194/EGUSPHERE-EGU25-19197

Applying Hybrid Quantum LSTM for Indoor Localization Based on RSSI (si apre in una nuova finestra)

Autori: S.F. Chien, David Chieng, Samuel Y.C. Chen, Charilaos C. Zarakovitis, H. S. Lim, Y.H. Xu
Pubblicato in: ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024
Editore: IEEE
DOI: 10.1109/ICASSP48485.2024.10447032

A Digital Twin Enabled Decision Support Framework for Ship Operational Optimisation Towards Decarbonisation (si apre in una nuova finestra)

Autori: Antonis Antonopoulos, Bill Karakostas, Takis Katsoulakos, Anargyros Mavrakos, Theodosis Tsaousis, Stathis Zavvos
Pubblicato in: Proceedings of Eighth International Congress on Information and Communication Technology (ICICT 2023), 2023, ISSN 2367-3370
Editore: Springer
DOI: 10.1007/978-981-99-3091-3_38

Agentic Anomaly Detection for Shipping

Autori: A Timms, A Langbridge, F O'Donncha
Pubblicato in: NeurIPS 2024 Workshop on Open-World Agents, 2024
Editore: NeurIPS 2024 Workshop on Open-World Agents

Optimal Transport for Efficient, Unsupervised Anomaly Detection on Industrial Data (si apre in una nuova finestra)

Autori: Abigail Langbridge, Fearghal O’Donncha, James T Rayfield, Bradley Eck
Pubblicato in: 2024 IEEE International Conference on Big Data (BigData), 2025
Editore: IEEE
DOI: 10.1109/BIGDATA62323.2024.10825081

A Digital Twin Enabled Decision Support Framework for Ship Operational Optimisation Towards Decarbonisation (si apre in una nuova finestra)

Autori: Antonopoulos, Antonis; Karakostas, Bill; Katsoulakos, Takis; Mavrakos, Anargyros; Tsaousis, Theodosis; Zavvos, Stathis
Pubblicato in: Proceedings of Eighth International Congress on Information and Communication Technology(ICICT 2023), 2023
Editore: SpringerLink
DOI: 10.1007/978-981-99-3091-3_38

Knowledge Graph Based Digital Twin to Support Green Shipping

Autori: Bill Karakostas, Antonis Antonopoulos, Takis Katsoulakos, Anargyros Mavrakos, Theodosis Tsaousis
Pubblicato in: CM3 – TRANSPORT 2023 : New Greener and Digital Modern Transport – its Challenges in Design Methods, Tools and Technologies : Book of Abstracts and Programme, 2024, ISSN 2670-191X
Editore: Jyväskylän yliopisto

Time Series Analysis for Digital Twins in Green Shipping (si apre in una nuova finestra)

Autori: Lazaros Avgeridis; Konstantinos Lentzos; Dimitrios Skoutas; Ioannis Z. Emiris
Pubblicato in: SNAME 8th International Symposium on Ship Operations, Management and Economics, Numero SNAME-SOME-2023-028, 2023, ISSN 0000-0000
Editore: OnePetro
DOI: 10.5957/SOME-2023-028

Quantum Neural Networks: A Path to Lower Emissions Through Fuel Consumption Prediction in Shipping (si apre in una nuova finestra)

Autori: S.F. Chien, Julien J.M. Hermans, Austin A. Kana, Charilaos. C. Zarakovitis, Stathis Zavvos, H.S. Lim
Pubblicato in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2025
Editore: IEEE
DOI: 10.1109/ICASSP49660.2025.10888871

From STEAM to Machine: Emissions control in the shipping 4.0 era (si apre in una nuova finestra)

Autori: Dimitrios Kaklis, Takis J. Varelas, Iraklis Varlamis, Pavlos Eirinakis, George Giannakopoulos, Constantine V. Spyropoulos
Pubblicato in: SNAME 8th International Symposium on Ship Operations, Management and Economics, Numero SNAME-SOME-2023-020, 2023
Editore: OnePetro
DOI: 10.5957/SOME-2023-020

State-of-the-Art Digital Twin Applications for Shipping Sector Decarbonization (si apre in una nuova finestra)

Autori: Bill Karakostas and Takis Katsoulakos
Pubblicato in: 2024
Editore: IGI Global
DOI: 10.4018/978-1-6684-9848-4

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile

Il mio fascicolo 0 0