Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Mechanisms of cell plasticity in the liver

Project description

Mechanisms of liver cells regeneration

Liver epithelial cells possess unique plasticity by which terminally differentiated cells change identity to regenerate injured or maldeveloped tissue. In Alagille syndrome, some patients can recover underdeveloped liver bile ducts, important for draining bile. Various animal models of Alagille syndrome have demonstrated that different cell types can contribute to bile duct regeneration that vary in quality depending on the region in the liver. The PlasticLiver project will employ a novel high-resolution barcode lineage tracing and gene expression profiling approach to resolve region-specific cell sources and mechanisms in liver regeneration in a mouse model for Alagille syndrome, contributing to deeper understanding of endogenous regenerative programs. The project will furthermore explore possibilities of enhancing the quality of bile duct regeneration.

Objective

The liver can regenerate thanks to a unique cell plasticity in which “terminally differentiated cells” change identity. Hepatocytes, the most abundant cell type sustaining liver metabolism, can transdifferentiate into a completely different cell type to repair the bile duct epithelium, which entails not only a fate switch but also a conversion of epithelial polarity. Despite this regenerative capacity, bile duct diseases present a major clinical challenge, often requiring a liver transplant. Activating and controlling endogenous regenerative programs, which preliminary data suggest are liver region-specific, is thus a promising therapeutic strategy but requires a deeper understanding of the underlying mechanisms.

Based on regional differences in the quality of regenerated bile ducts in a mouse model of Alagille syndrome, I hypothesize that bile ducts in the hilar region regenerate via cholangiocyte proliferation, yielding well-formed epithelia, while bile ducts at the organ periphery develop de novo via hepatocyte transdifferentiation, yielding malformed bile ducts with aberrant polarity. Because there are multiple cell sources for liver repair, PlasticLiver aims to account for spatial and within-cell type heterogeneity in the liver during bile duct regeneration. Taking advantage of a novel cutting-edge approach for high resolution barcode lineage tracing and gene expression profiling co-developed in my host lab, I will resolve region-specific cell sources and mechanisms in developing and regenerating livers of a mouse model of Alagille syndrome. Moreover, combining generated single cell gene expression data and microscopy analysis of healthy and regenerated tissues, I will identify molecular mechanisms and potential targets to improve epithelial polarity in regenerated peripheral bile ducts. Ultimately, PlasticLiver will yield fundamental mechanistic insights into cell fate decisions and why liver, but no other organs, uses this type of cellular plasticity.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

KAROLINSKA INSTITUTET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 222 727,68
Address
NOBELS VAG 5
171 77 STOCKHOLM
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0