Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

RRR-XAI: Right for the Right Reason eXplainable Artificial Intelligence

Description du projet

Démêler la complexité de l’apprentissage profond

Présents dans presque tous les secteurs, les réseaux neuronaux profonds (RNP) sont à la fine pointe de l’IA. Malgré leurs performances de haut vol, les RNP ne sont pas exempts de défauts. Les modèles complexes sont difficiles à interpréter et à analyser pour les humains. Les RNP sont également sujets aux biais. Le projet RRR-XAI, financé par l’UE, entend y remédier en rendant l’apprentissage profond compréhensible. Il réalisera des analyses qui lui permettront de prendre conscience des différents types de phénomènes qui sont source de problèmes pour les RNP. Pour ce faire, il mènera des études de cas, entre autres, sur la détection de la COVID-19 à partir de radiographies pulmonaires et sur la détection d’armes dans les systèmes d’alarme et les foules à partir d’images.

Objectif

Deep Deep Learning (DL) is a form of machine learning (ML) that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. This hierarchy allows a DL model to learn complicated concepts by building them out of simpler ones. A graph of these hierarchies would be many layers deep, and thus its name. A Deep neural network (DNN) is based on an artificial neural network model, and its core strength is that there is no need for human assistance to formally specify all the knowledge that the model needs. This makes DNNs represent the state of the art in Artificial Intelligence (AI). Despite their top performance and ubiquity of applications (from Healthcare to autonomous cars), DNNs suffer serious shortcomings. First, DNNs are considered black box models, i.e. with complex and opaque algorithms, hard to interpret and diagnose. Second, they suffer from bias, and the testing protocols for automatic recognition are not fair, as they learn patterns in the data that are not correlated to the output; e.g. they may focus on areas outside the lung in X ray images to predict the presence of COVID-19. Although DNNs outperform many other methods, they often are not right for the right reasons (RRR). RRR-XAI tackles this mismatch and bridges this gap through a tight integration of DL and symbolic AI, with the principal objective of making DL explainable. To achieve this I will follow the rationale behind XAI under the RRR philosophy and perform analyses to understand two types of phenomena that cause trouble in DNNs. Second, I will use: 1) Domain knowledge expertise as supporting evidence to explain a particular model output; 2) Neural-Symbolic computation to communicate the explanation of such phenomena in natural language. I will study two practical use cases where supporting explanations of the model output are critical: a) COVID-19 prediction from chest X-Ray images, and b) Weapon detection in alarm systems and crowds from images.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2021-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSIDAD DE GRANADA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 165 312,96
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Partenaires (1)

Mon livret 0 0