Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Smart roots for reducing greenhouse gases emissions from rice cropping

Project description

A green solution to grow rice

Rice is a nutritious staple crop for half the world’s population. However, rice production has an impact on the climate. Cultivation under flooded conditions is a source of greenhouse gas emissions, but there is a way to farm rice without hurting the environment. The EU-funded SmartRoots project will pave the way for the development of high-yielding rice cultivars with desirable traits reducing GHGs emissions from flooded soils. Taking a multidisciplinary approach, SmartRoots will combine state-of-the-art physiological measurements including microsensors (for in vivo gas fluxes), gas chromatography, mass spectrometry and microscopy characterisation of plant tissues. SmartRoots will test whether genotypes with tight barriers to radial oxygen loss will have less permeability to GHGs and therefore lower emissions.

Objective

Rice production is the main agricultural source of greenhouse gases (i.e. carbon dioxide; CO2, nitrous oxide; N2O and methane; CH4). Scientific evidence suggest that greenhouse gases (GHGs) produced and accumulated in rice paddies (flooded soils) can be vented out to atmosphere through plant tissues. However, information on the plant characteristics influencing such GHGs emission processes is scarce. The mechanisms of GHGs diffusion from rhizosphere to and along the roots and the vent of these GHGs to atmosphere as well as the permeability coefficient of roots to GHGs are largely unknown. This project aims to identify characteristics of rice roots that reduce both the vent of GHGs through plant tissues from soils to atmosphere (through root apoplastic barriers) and the production of GHGs in soils (oxidation of CH4 to CO2). Moreover, this project will study the root permeability to GHGs and the anatomical and chemical characteristics contributing to GHGs diffusion through plants. This project will use a multidisciplinary approach combining state-of-the-art physiological measurements including microsensing technology (for in vivo gas fluxes), gas chromatography, mass spectrometry and microscopy characterization of plant tissues. It is hypothesized that genotypes with tight barriers to radial oxygen loss will have less permeability to GHGs. Moreover, genotypes with no barriers to radial oxygen loss, high number of laterals and an efficient roots system for O2 transport will allow high CH4 oxidation to CO2, thus reducing the venting of this potent GHG to atmosphere. This project will identify root phenotypic differences among rice cultivars and this will serve as a basis for developing high yielding cultivars with desirable traits reducing GHGs emissions from flooded soils.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

KOBENHAVNS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 230 774,40
Address
NORREGADE 10
1165 KOBENHAVN
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0