Project description DEENESFRITPL Models in porous media for the CO2 capture Carbon dioxide (CO2) produced by human activities is the largest contributor to global warming. Carbon sequestration – the process of capturing and storing atmospheric CO2 – is one possible solution. After capture, the CO2 is compressed and transferred to a site where it can be injected underground for permanent storage. This method can capture CO2 from power plants and inject it into underground geological formations. Identifying suitable sequestration sites and designing the injection process is essential. The EU-funded MEDIA project will develop design capabilities of carbon storage processes in geological formations. MEDIA will develop models to describe the rock properties and improve commercial reservoir simulators. Show the project objective Hide the project objective Objective Global warming attracts great social, economic, political and scientific attention. A major proportion of the carbon dioxide (CO2) emitted in the atmosphere is due to anthropogenic activities and represents one of the main causes of this global problem. A possible solution is represented by carbon sequestration: CO2 is captured from power plants and injected in underground geological formations, where it dissolves into the resident fluid (brine) and can be safely stored for hundreds of years. In this frame, the properties of the rocks play a key role: after injection, CO2 follows sinuous pathways among the rock grains and spreads in a complex manner, making predictions on the long-term dynamics hard to obtain. For this reason, the identification of suitable sequestration sites and the design of the injection process is still a challenging task. Moreover, injection of CO2 takes place at depths between 1 and 3 km beneath the earth surface, which makes in-situ measurements hard to obtain: simulations and lab-scale experiments are essential. To make practical and prudent decisions about the future energy production strategies, the European Union (EU) must be able to accurately identify its carbon storage capacity. The research proposed here, “Modelling the Effect of Dispersion on convection In porous mediA (MEDIA)”, aims at improving our understanding and design capabilities of carbon storage processes in geological formations. This study will focus on the analysis and interpretation of experiments and simulations of convection in porous media. The results will be used to develop models that describe the rock properties, contributing also to improve commercial reservoir simulators. As part of MEDIA, the applicant will (1) examine the effect of dispersion via innovative experiments in bead packs, (2) quantify the effect of dispersion with state-of-art numerical pore-scale simulations, and (3) identify appropriate models of dispersion for large-scale simulations. Fields of science agricultural sciencesagriculture, forestry, and fisheriesagriculturegrains and oilseeds Programme(s) HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme Topic(s) HORIZON-MSCA-2021-PF-01-01 - MSCA Postdoctoral Fellowships 2021 Call for proposal HORIZON-MSCA-2021-PF-01 See other projects for this call Funding Scheme HORIZON-AG-UN - HORIZON Unit Grant Coordinator UNIVERSITEIT TWENTE Net EU contribution € 203 464,32 Address Drienerlolaan 5 7522 NB Enschede Netherlands See on map Region Oost-Nederland Overijssel Twente Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00