Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Photochemical organocatalytic atropselective processes for the sustainable synthesis of biorelevant axially chiral molecules

Ziel

Chiral molecules containing axes of chirality (known as atropisomers) are present in natural products, bioactive molecules, and functional materials. Their increasingly important role in pharmaceuticals means that effective asymmetric strategies are needed for their preparation. However, the available catalytic methods rely on ionic pathways, which limits the diversity of atropisomers that can be achieved. This project seeks to close this gap in asymmetric methodology by providing new catalytic techniques for atropselective synthesis, based on radical chemistry, to greatly boost the impact of axially chiral compounds in drug discovery. We aim to develop methods that combine enantioselective organocatalysis with visible light photochemistry, two powerful strategies with extraordinary potential for the sustainable preparation of chiral molecules. Achieving this target would also address the key synthetic challenge of developing light-driven atropselective processes proceeding via radical pathways.
The research will combine the hosts expertise in photochemistry and radical reactions with the applicants background in asymmetric organocatalysis. The resulting strategies will be used as a platform for assembling libraries of atropisomeric compounds that, together with biological screening carried out in collaboration with the pharmaceutical company Bayer AG, will increase the probability of success in identifying drug-candidate structures. The PHOTO-ATROP project is unique because it provides training in organocatalysis and photochemistry applied to drug discovery, thus contributing to European excellence and sustainability. Its multicultural nature will broaden the fellows competencies and place him in a competitive position for his next career move

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Koordinator

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Netto-EU-Beitrag
€ 186 720,08
Adresse
VIA ZAMBONI 33
40126 Bologna
Italien

Auf der Karte ansehen

Region
Nord-Est Emilia-Romagna Bologna
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
Keine Daten

Partner (1)