Objective In recent decades, considerable progress has been made in bio-nano research towards a growing understanding of the interaction mechanisms between nanoparticles (NPs) and living systems. Yet, the impact that cell-internalised NPs have on exosome secretion remains largely unknown. Exosomes are ubiquitous cell-released vesicles seemingly involved in numerous biological processes, including regulation of cell-cell communication and disease progression. This enigmatic functional complexity is under the spotlight of a large scientific community in the fields of chemistry, biology and nanomedicine.Only recently, it has been reported that in vitro cellular uptake of platinum and iron oxide NP clusters (~ 100 nm in size) significantly increases the release of exosomes and alters their composition. However, it is unclear whether this evidence reflects a general behaviour or depends on the design of the NPs. A strong need thus arises to explore the mechanistic details of this interaction. Inspired by this challenge, NanoEXOS aims to develop a novel framework to obtain a better and more general understanding of how engineered NPs interfere with the regulatory processes of exosome formation and release. NP-cell studies will be undertaken in vitro to focus on the effects that NPs have on cell-specific exosome samples. Importantly, NanoEXOS will systematically investigate how this interaction depends on the properties of NPs (e.g. well-defined size, shape, surface modification), their biomolecular interactions and their cellular entry mechanism.Overall, NanoEXOS will contribute to expanding our knowledge of how exogenous NPs are processed by living systems. A thorough comprehension of how NPs access and alter key cellular machineries, such as exosome secretion, plays a pivotal role in the biological evaluation of these nanomaterials. This research question is crucial to establish safe and robust biological control over advanced NP-assisted diagnostic and therapeutic strategies. Fields of science natural scienceschemical sciencesinorganic chemistrytransition metalsnatural sciencesbiological sciencescell biologymedical and health sciencesmedical biotechnologynanomedicineengineering and technologynanotechnologynano-materials Programme(s) HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme Topic(s) HORIZON-MSCA-2021-PF-01-01 - MSCA Postdoctoral Fellowships 2021 Call for proposal HORIZON-MSCA-2021-PF-01 See other projects for this call Funding Scheme HORIZON-AG-UN - HORIZON Unit Grant Coordinator UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN Net EU contribution € 199 694,40 Address Belfield 4 Dublin Ireland See on map Region Ireland Eastern and Midland Dublin Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00