Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Estimating the ice volume of Earth's glaciers via Artificial Intelligence and remote sensing

Project description

Improving glacier ice volume estimates

Glaciers are vital for life on Earth. However, because of global warming, they are losing mass, heightening the importance of improving glacier ice volume estimates. Currently, these estimates are limited by difficulties in directly measuring ice thickness. Funded by the Marie Skłodowska-Curie Actions programme, the SKYNET project aims to develop an innovative model based on deep learning capable of exploiting the huge amount of available satellite data to improve current ice volume estimates of all of Earth’s glaciers. The project will use state-of-the art image inpainting architectures fed with satellite-based digital elevation models, amongst other methods.

Objective

Estimating the ice volume of Earth's glaciers is a grand challenge of Earth System science. Besides being a critical parameter to model glacier evolution, knowledge of glacier volume is fundamental to quantify global sea level rise and available freshwater resources. Under current global warming glaciers are losing mass, making improved glacier ice volume estimates a top-priority to constrain future climate scenarios. Direct glacier ice volume estimates are limited by difficulty in directly measuring the ice thickness. As a result, estimates rely on models, many of which depend on explicit physical laws but require parameters often poorly constrained. Today, the amount of satellite data is increasing at such a rate that it cannot be efficiently exploited by traditional processing pipelines. At the same time, Artificial Intelligence techniques are becoming increasingly dominant problem-solving techniques. In particular, deep learning models have recently shown the ability to surpass human accuracy in many scientific tasks. The goal of the SKYNET project is to develop an innovative deep learning-based model capable of exploiting the huge amount of available satellite data to improve the current estimates of ice volumes of all Earths glaciers, from continental alpine glaciers to polar glaciers, including those in the periphery of Greenland and Antarctica. The proposed methodology makes use of state-of-the art image inpainting architectures fed with satellite-based digital elevation models (TanDEM-X,REMA), altimetry (NASAs ICESat-2), gravity and ice surface velocity data to infer subglacial topographies hence ice volumes. Modelled topographies will be constrained towards realistic solutions using glacier ice thickness measurements (GlaThiDa repository) from in-situ and remotely sensed observations. SKYNET will be jointly developed by two leading institutions in glaciology and remote sensing: the University of Venice and the University of California Irvine.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

UNIVERSITA CA' FOSCARI VENEZIA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 288 859,20
Address
DORSODURO 3246
30123 VENEZIA
Italy

See on map

Region
Nord-Est Veneto Venezia
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0