Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Estimating the ice volume of Earth's glaciers via Artificial Intelligence and remote sensing

Descrizione del progetto

Migliorare le stime del volume dei ghiacciai

I ghiacciai sono fondamentali per la vita sulla Terra ma, a causa del riscaldamento globale, stanno perdendo massa, il che accresce l’importanza di migliorare le stime del volume dei ghiacciai. Attualmente queste stime sono limitate dalla difficoltà di misurare direttamente lo spessore del ghiaccio. Il progetto SKYNET, finanziato dal programma di azioni Marie Skłodowska-Curie, si propone di elaborare un modello innovativo, basato sull’apprendimento profondo, in grado di sfruttare l’enorme quantità di dati satellitari disponibili per migliorare le attuali stime del volume di ghiaccio di tutti i ghiacciai della Terra. Il progetto si avvarrà, fra l’altro, di architetture di inpainting delle immagini all’avanguardia, alimentate con modelli digitali di elevazione basati su satellite.

Obiettivo

Estimating the ice volume of Earth's glaciers is a grand challenge of Earth System science. Besides being a critical parameter to model glacier evolution, knowledge of glacier volume is fundamental to quantify global sea level rise and available freshwater resources. Under current global warming glaciers are losing mass, making improved glacier ice volume estimates a top-priority to constrain future climate scenarios. Direct glacier ice volume estimates are limited by difficulty in directly measuring the ice thickness. As a result, estimates rely on models, many of which depend on explicit physical laws but require parameters often poorly constrained. Today, the amount of satellite data is increasing at such a rate that it cannot be efficiently exploited by traditional processing pipelines. At the same time, Artificial Intelligence techniques are becoming increasingly dominant problem-solving techniques. In particular, deep learning models have recently shown the ability to surpass human accuracy in many scientific tasks. The goal of the SKYNET project is to develop an innovative deep learning-based model capable of exploiting the huge amount of available satellite data to improve the current estimates of ice volumes of all Earths glaciers, from continental alpine glaciers to polar glaciers, including those in the periphery of Greenland and Antarctica. The proposed methodology makes use of state-of-the art image inpainting architectures fed with satellite-based digital elevation models (TanDEM-X,REMA), altimetry (NASAs ICESat-2), gravity and ice surface velocity data to infer subglacial topographies hence ice volumes. Modelled topographies will be constrained towards realistic solutions using glacier ice thickness measurements (GlaThiDa repository) from in-situ and remotely sensed observations. SKYNET will be jointly developed by two leading institutions in glaciology and remote sensing: the University of Venice and the University of California Irvine.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) HORIZON-MSCA-2021-PF-01

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

UNIVERSITA CA' FOSCARI VENEZIA
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 288 859,20
Indirizzo
DORSODURO 3246
30123 VENEZIA
Italia

Mostra sulla mappa

Regione
Nord-Est Veneto Venezia
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partner (1)

Il mio fascicolo 0 0