Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Estimating the ice volume of Earth's glaciers via Artificial Intelligence and remote sensing

Opis projektu

Zwiększenie dokładności szacunków objętości lodu w lodowcach

Lodowce są jednym z nieodzownych elementów odpowiedzialnych za istnienie życia na Ziemi. Z powodu globalnego ocieplenia zmniejszeniu ulega ich masa, co wymusza na nas usprawnienie pomiarów i szacunków objętości lodu w lodowcach. Obecnie otrzymywanie szacunkowych wartości jest ograniczone w wyniku trudności w bezpośrednim pomiarze grubości lodu. Finansowany w ramach działania „Maria Skłodowska-Curie” projekt SKYNET ma na celu opracowanie innowacyjnego modelu opartego na uczeniu głębokim, który będzie w stanie wykorzystać ogromną ilość dostępnych danych satelitarnych w celu zwiększenia dokładności istniejących szacunków objętości lodu dla wszystkich lodowców na Ziemi. W projekcie zostaną wykorzystane między innymi najnowocześniejsze architektury uzupełniania obrazów wykorzystujące satelitarne cyfrowe modele wysokości terenu.

Cel

Estimating the ice volume of Earth's glaciers is a grand challenge of Earth System science. Besides being a critical parameter to model glacier evolution, knowledge of glacier volume is fundamental to quantify global sea level rise and available freshwater resources. Under current global warming glaciers are losing mass, making improved glacier ice volume estimates a top-priority to constrain future climate scenarios. Direct glacier ice volume estimates are limited by difficulty in directly measuring the ice thickness. As a result, estimates rely on models, many of which depend on explicit physical laws but require parameters often poorly constrained. Today, the amount of satellite data is increasing at such a rate that it cannot be efficiently exploited by traditional processing pipelines. At the same time, Artificial Intelligence techniques are becoming increasingly dominant problem-solving techniques. In particular, deep learning models have recently shown the ability to surpass human accuracy in many scientific tasks. The goal of the SKYNET project is to develop an innovative deep learning-based model capable of exploiting the huge amount of available satellite data to improve the current estimates of ice volumes of all Earths glaciers, from continental alpine glaciers to polar glaciers, including those in the periphery of Greenland and Antarctica. The proposed methodology makes use of state-of-the art image inpainting architectures fed with satellite-based digital elevation models (TanDEM-X,REMA), altimetry (NASAs ICESat-2), gravity and ice surface velocity data to infer subglacial topographies hence ice volumes. Modelled topographies will be constrained towards realistic solutions using glacier ice thickness measurements (GlaThiDa repository) from in-situ and remotely sensed observations. SKYNET will be jointly developed by two leading institutions in glaciology and remote sensing: the University of Venice and the University of California Irvine.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja tego projektu została potwierdzona przez zespół projektowy.

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2021-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

UNIVERSITA CA' FOSCARI VENEZIA
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 288 859,20
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Partnerzy (1)

Moja broszura 0 0