Project description
Longer range lithium-ion batteries for electric vehicles
Funded by the European Research Council, the Electrofloat project aims to produce high-capacity lithium-ion battery anodes using nanostructured silicon fabrics. The proposed method will address the technical challenges of developing cost-effective and environmentally sustainable processes for anodes with a high silicon content. It will help eliminate solvents, polymers and mixing steps in anode manufacture. Being more abundant than graphite and enabling higher power batteries with thinner electrodes, silicon could help increase the energy density of next-generation lithium-ion battery cells by over 50 %. This will have important implications for electric vehicles, especially their range. Project activities will focus on de-risking the manufacturing process, mitigating capacity fading and designing a scale-up roadmap to 1 GWh/year.
Objective
“It is estimated that Europe needs an installed capacity for lithium-ion battery production of 300 GWh/year by 2030. By then, the battery market for electric vehicles alone will be worth $116 billion annually. Amongst many technical challenges in this transition is to develop cost-effective and environmentally sustainable processes methods to manufacture high silicon (Si) content anodes for the next generation LIBs (3b and 4a). Si is more abundant than graphite and can enable higher power batteries with thinner electrodes as well as extending the range of EVs by increasing energy density of the next generation of LIB cells by over 50%. ELECTROFLOAT proposes a new method to produce high capacity lithium ion battery anodes made of nanostructured silicon fabrics with up to 100 w.t% Si content, which eliminates all solvents, polymers and mixing steps from anode manufacture. This project comprises a set of selected R&D activities in key areas to reach TRL7 and start pilot-plant scale up, focused on a) de-risking the manufacturing process, b) application of strategies to mitigate capacity fading and increase electrochemical performance under application operational conditions c) designing scale-up roadmap to 1GWh/a and carrying out a techno-economic analysis to determine projected manufacturing costs and establish an adequate validation-driven scale-up strategy. Non-technical activities will be conducted by an Industrialisation Development Team consisting of the PI, two external industrialisation advisors, IMDEA’s Technology Transfer officer, and the CEO of Floatech, the newly created spin-off company pursuing commercialization of this technology.”
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologymechanical engineeringmanufacturing engineering
- natural scienceschemical scienceselectrochemistryelectric batteries
- social sciencessocial geographytransportelectric vehicles
- natural scienceschemical sciencesinorganic chemistryalkali metals
- natural scienceschemical sciencesinorganic chemistrymetalloids
You need to log in or register to use this function
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Funding Scheme
HORIZON-ERC-POC - HORIZON ERC Proof of Concept GrantsHost institution
28906 Getafe
Spain