Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Seamless design of smart edge processors

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

Technical specification for neural accelerator hardware (si apre in una nuova finestra)

Set of technical requirements for hardware accelerators for neural networks (to WP2)

Description SoC architecture, and the rapid design & prototyping environment (si apre in una nuova finestra)

Report in detail the developed SoC architecture, and the first generation of the rapid design & prototyping environment useable by other partners.

Requirements, Threats, and Vulnerabilities Analysis (si apre in una nuova finestra)

Description of the use cases security requirements, potential threats, and identified vulnerabilities

Intermediate Neural network resiliency analysis and AxC optimizations (si apre in una nuova finestra)

Intermediate report of the NN resiliency analysis for AxC framework

Modular architecture template definition (si apre in una nuova finestra)

Definition of high level SoC architecture and interfaces for accelerators, to be aligned with WP2/3.

Update of requirements and use cases (si apre in una nuova finestra)

Update of D1.1 after the point demos are ready

Compiler prototype (si apre in una nuova finestra)

Report and first prototype of our compiler and DSL framework, implementing constraints and opportunities in the compiler middle end. This deliverable is extended to incorporate topology-aware asymmetric CGRA arithmetic mappings;

Initial requirements and use cases (si apre in una nuova finestra)

Description of the use cases, their first set of requirements and their technical specification. These are originating from all use cases on all aspects of the CONVOLVE objectives. An initial relationship between requirements and objectives to use-cases is provided.

Report on the roadmap (si apre in una nuova finestra)

Definition of energy-efficient, reconfigurable, and self-healing accelerators.

Initial communication plan and reports (si apre in una nuova finestra)

Initial definition of the communication plan and reporting of the communication activities carried out.

Initial Dissemination plan and report (si apre in una nuova finestra)

Initial report on definition of the dissemination plan and reporting of the dissemination activities carried out

Intermediate report on the design of the targeted accelerator blocks (si apre in una nuova finestra)

Definition of the micro-architecture of the targeted accelerators and design progress of the targeted accelerators.

Roadmap document for neural networks (si apre in una nuova finestra)

Roadmap document for low power, high performance neural networks.

Description of the gen1 performance analysis framework and DSE framework (si apre in una nuova finestra)

Report in detail the first generation of the developed performance analysis framework and DSE framework for heterogeneous ML platforms useable by other partners.

Constraints and opportunities definition (si apre in una nuova finestra)

Integration design document on (security) constraints and (optimization) opportunities and compiler interface design, including interfaces with other WPs and open-source infrastructure (LLVM, MLIR).

Initial Memory management and allocation for ULP accelerators (si apre in una nuova finestra)

Initial report and code of the MM customized to the CONVOLVE SoC architecture

Intermediate report on the accelerator simulator (si apre in una nuova finestra)

Reporting the developed performance models and provides the progress of the simulator design to utilize the models

Pubblicazioni

Late Breaking Results: Language-level QoR modeling for High-Level Synthesis (si apre in una nuova finestra)

Autori: Dimosthenis Masouros, Aggelos Ferikoglou, Georgios Zervakis, Sotirios Xydis, Dimitrios Soudris
Pubblicato in: Proceedings of the 61st ACM/IEEE Design Automation Conference, 2024
Editore: ACM
DOI: 10.1145/3649329.3663500

Multi-Partner Project: Securing Future Edge-AI Processors in Practice (CONVOLVE) (si apre in una nuova finestra)

Autori: Sven Argo, Henk Corporaal, Alejandro Garza, Marc Geilen, Manil Dev Gomony, Tim Güneysu, Adrian Marotzke, Fouwad Mir, Jan Richter-Brockmann, Jeffrey Smith, Mottaqiallah Taouil, Said Hamdioui
Pubblicato in: 2025 Design, Automation & Test in Europe Conference (DATE), 2025
Editore: IEEE
DOI: 10.23919/DATE64628.2025.10993210

SECOMP: Formally Secure Compilation of Compartmentalized C Programs (si apre in una nuova finestra)

Autori: Jérémy Thibault, Roberto Blanco, Dongjae Lee, Sven Argo, Arthur Azevedo de Amorim, Aïna Linn Georges, Cătălin Hriţcu, Andrew Tolmach
Pubblicato in: Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, 2025
Editore: ACM
DOI: 10.1145/3658644.3670288

CMDS: Cross-layer Dataflow Optimization for DNN Accelerators Exploiting Multi-bank Memories (si apre in una nuova finestra)

Autori: Man Shi; Steven Colleman MICAS-ESAT, KU Leuven ; Charlotte VanDeMieroop; Antony Joseph; Maurice Meijer; Wim Dehaene; Marian Verhelst
Pubblicato in: 2023 24th International Symposium on Quality Electronic Design (ISQED), 2023, ISSN 1948-3295
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/ISQED57927.2023.10129330

An Empirical Evaluation of Sliding Windows on Siren Detection Task using Spiking Neural Networks (si apre in una nuova finestra)

Autori: Shreya Kshirasagar; Andre Guntoro; Christian Mayr
Pubblicato in: 6th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2024), 2024, ISSN 2938-5350
Editore: International Frequency Sensor Association
DOI: 10.13140/RG.2.2.23368.53763

ACCO: Automated Causal CNN Scheduling Optimizer for Real-Time Edge Accelerators (si apre in una nuova finestra)

Autori: Jun Yin, Linyan Mei, Andre Guntoro, Marian Verhelst
Pubblicato in: """2023 IEEE 41st International Conference on Computer Design (ICCD) """, 2023, ISSN 2576-6996
Editore: ACM/IEEE
DOI: 10.1109/ICCD58817.2023.00065

HTVM: Efficient Neural Network Deployment On Heterogeneous TinyML Platforms (si apre in una nuova finestra)

Autori: Josse Van Delm, Maarten Vandersteegen, Alessio Burrello, Giuseppe Maria Sarda, Francesco Conti, Daniele Jahier Pagliari, Luca Benini, Marian Verhelst
Pubblicato in: 2023 60th ACM/IEEE Design Automation Conference (DAC), 2024
Editore: IEEE
DOI: 10.1109/DAC56929.2023.10247664

ESAM: Energy-efficient SNN Architecture using 3nm FinFET Multiport SRAM-based CIM with Online Learning (si apre in una nuova finestra)

Autori: Lucas Huijbregts, Liu Hsiao-Hsuan, Paul Detterer, Said Hamdioui, Amirreza Yousefzadeh, Rajendra Bishnoi
Pubblicato in: 2024
Editore: Proceedings of the 61st ACM/IEEE Design Automation Conference
DOI: 10.48550/arXiv.2410.09130

A Multi-level Compiler Backend for Accelerated Micro-kernels Targeting RISC-V ISA Extensions (si apre in una nuova finestra)

Autori: Alexandre Lopoukhine, Federico Ficarelli, Christos Vasiladiotis, Anton Lydike, Josse Van Delm, Alban Dutilleul, Luca Benini, Marian Verhelst, Tobias Grosser
Pubblicato in: Proceedings of the 23rd ACM/IEEE International Symposium on Code Generation and Optimization, 2025
Editore: ACM
DOI: 10.1145/3696443.3708952

Auditory Anomaly Detection using Recurrent Spiking Neural Networks (si apre in una nuova finestra)

Autori: Shreya Kshirasagar; Benjamin Cramer; Andre Guntoro; Christian Mayr
Pubblicato in: IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2024, ISSN 2834-9857
Editore: IEEE
DOI: 10.1109/AICAS59952.2024.10595878

DataMaestro: A Versatile and Efficient Data Streaming Engine Bringing Decoupled Memory Access To Dataflow Accelerators (si apre in una nuova finestra)

Autori: Xiaoling Yi, Yunhao Deng, Ryan Antonio, Fanchen Kong, Guilherme Paim, Marian Verhelst
Pubblicato in: 2025 62nd ACM/IEEE Design Automation Conference (DAC), 2025
Editore: IEEE
DOI: 10.1109/DAC63849.2025.11133141

Dependability of Future Edge-AI Processors: Pandora’s Box (si apre in una nuova finestra)

Autori: Manil Dev Gomony, Anteneh Gebregiorgis, Moritz Fieback, Marc Geilen, Sander Stuijk, Jan Richter-Brockmann, Rajendra Bishnoi, Sven Argo, Lara Arche Andradas, Tim Güneysu, Mottaqiallah Taouil, Henk Corporaal, Said Hamdioui
Pubblicato in: 2023 IEEE European Test Symposium (ETS), 2023, ISSN 1558-1780
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/ETS56758.2023.10174180

Optimizing Layer-Fused Scheduling of Transformer Networks on Multi-accelerator Platforms (si apre in una nuova finestra)

Autori: Steven Colleman, Arne Symons, Victor J.B. Jung, Marian Verhelst
Pubblicato in: 2024 25th International Symposium on Quality Electronic Design (ISQED), 2024, ISSN 1948-3295
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/ISQED60706.2024.10528689

Auditory Anomaly Detection using Recurrent Spiking Neural Networks (si apre in una nuova finestra)

Autori: Shreya Kshirasagar, Benjamin Cramer, Andre Guntoro, Christian Mayr
Pubblicato in: 2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS), 2024
Editore: IEEE
DOI: 10.1109/AICAS59952.2024.10595878

Verifying Peephole Rewriting In SSA Compiler IRs (si apre in una nuova finestra)

Autori: Siddharth Bhat, Alex Keizer, Chris Hughes, Andres Goens and Tobias Grosser
Pubblicato in: 2024
Editore: Open Access
DOI: 10.48550/arXiv.2407.03685

Energy Cost Modelling for Optimizing Large Language Model Inference on Hardware Accelerators (si apre in una nuova finestra)

Autori: Robin Geens, Man Shi, Arne Symons, Chao Fang, Marian Verhelst
Pubblicato in: 2024 IEEE 37th International System-on-Chip Conference (SOCC), 2024
Editore: IEEE
DOI: 10.1109/SOCC62300.2024.10737844

OpenGeMM: A Highly-Efficient GeMM Accelerator Generator with Lightweight RISC-V Control and Tight Memory Coupling (si apre in una nuova finestra)

Autori: Xiaoling Yi, Ryan Antonio, Joren Dumoulin, Jiacong Sun, Josse Van Delm, Guilherme Pereira Paim, Marian Verhelst
Pubblicato in: Proceedings of the 30th Asia and South Pacific Design Automation Conference, 2025
Editore: ACM
DOI: 10.1145/3658617.3697652

HTVM: Efficient Neural Network Deployment On Heterogeneous TinyML Platforms (si apre in una nuova finestra)

Autori: Josse Van Delm, Maarten Vandersteegen, Alessio Burrello, Giuseppe Maria Sarda, Francesco Conti, Daniele Jahier Pagliari, Luca Benini, Marian Verhelst
Pubblicato in: 2023 60th ACM/IEEE Design Automation Conference (DAC), 2024
Editore: IEEE
DOI: 10.1109/DAC56929.2023.10247664

NeuralCasting: A Front-End Compilation Infrastructure for Neural Networks (si apre in una nuova finestra)

Autori: Alessandro Cerioli, Riccardo Miccini, Clément Laroche, Tobias Piechowiak, Luca Pezzarossa, Jens Sparsø, Martin Schoeberl
Pubblicato in: 2024 11th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), 2024
Editore: IEEE
DOI: 10.1109/IOTSMS62296.2024.10710209

Decoupled Access-Execute Enabled DVFS for TinyML Deployments on STM32 Microcontrollers (si apre in una nuova finestra)

Autori: Elisavet Lydia Alvanaki, Manolis Katsaragakis, Dimosthenis Masouros, Sotirios Xydis, Dimitrios Soudris
Pubblicato in: 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2024
Editore: IEEE
DOI: 10.23919/DATE58400.2024.10546540

Differentiable Transportation Pruning (si apre in una nuova finestra)

Autori: Li, Yunqiang; van Gemert, Jan C.; Hoefler, Torsten; Moons, Bert; Eleftheriou, Evangelos; Verhoef, Bram-Ernst
Pubblicato in: 2023 IEEE/CVF International Conference on Computer Vision (ICCV), 2023, ISSN 2380-7504
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.48550/ARXIV.2307.08483

DeFiNES: Enabling Fast Exploration of the Depth-first Scheduling Space for DNN Accelerators through Analytical Modeling (si apre in una nuova finestra)

Autori: Mei, Linyan; Goetschalckx, Koen; Symons, Arne; Verhelst, Marian
Pubblicato in: 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2023, ISSN 2378-203X
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/HPCA56546.2023.10071098

Challenges and Opportunities of Security-Aware EDA (si apre in una nuova finestra)

Autori: Jakob Feldtkeller; Pascal Sasdrich; Tim Güneysu
Pubblicato in: ACM Transactions on Embedded Computing Systems, 2023, ISSN 1539-9087
Editore: Association for Computing Machinery
DOI: 10.1145/3576199

xDSL: Sidekick Compilation for SSA-Based Compilers (si apre in una nuova finestra)

Autori: Mathieu Fehr, Michel Weber, Christian Ulmann, Alexandre Lopoukhine, Martin Paul Lücke, Théo Degioanni, Christos Vasiladiotis, Michel Steuwer, Tobias Grosser
Pubblicato in: Proceedings of the 23rd ACM/IEEE International Symposium on Code Generation and Optimization, 2025
Editore: ACM
DOI: 10.1145/3696443.3708945

SALSA: Simulated Annealing based Loop-Ordering Scheduler for DNN Accelerators (si apre in una nuova finestra)

Autori: Victor J.B. Jung, Arne Symons, Linyan Mei, Marian Verhelst, Luca Benini
Pubblicato in: 2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Numero 10168625, 2023, ISSN 2834-9857
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/AICAS57966.2023.10168625

PetaOps/W edge-AI Processors: Myth or reality? (si apre in una nuova finestra)

Autori: Manil Dev Gomony, Floran De Putter, Anteneh Gebregiorgis, Gianna Paulin, Linyan Mei, Vikram Jain, Said Hamdioui, Victor Sanchez, Tobias Grosser, Marc Geilen, Marian Verhelst, Friedemann Zenke, Frank Gurkaynak, Barry De Bruin, Sander Stuijk, Simon Davidson
Pubblicato in: 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2023, ISSN 1558-1101
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.23919/DATE56975.2023.10136926

Implicit variance regularization in non-contrastive SSL. Advances in Neural Information Processing Systems (si apre in una nuova finestra)

Autori: Halvagal, M. S., Laborieux, A., & Zenke, F.
Pubblicato in: Neurips 22023, 2023
Editore: NeurIPS 2023
DOI: 10.48550/ARXIV.2212.04858

Analog or Digital In-Memory Computing? Benchmarking Through Quantitative Modeling (si apre in una nuova finestra)

Autori: Jiacong Sun, Pouya Houshmand, Marian Verhelst
Pubblicato in: 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2023, ISSN 1933-7760
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/ICCAD57390.2023.10323763

Towards a tailored mixed-precision sub-8-bit quantization scheme for Gated Recurrent Units using Genetic Algorithms (si apre in una nuova finestra)

Autori: Riccardo Miccini, Alessandro Cerioli, Clément Laroche, Tobias Piechowiak, Jens Sparsø, Luca Pezzarossa
Pubblicato in: Proceedings of tinyML Research Symposium (tinyML Research Symposium’24), 2024, ISSN 2331-8422
Editore: Association for Computing Machinery
DOI: 10.48550/ARXIV.2402.12263

Gadget-based Masking of Streamlined NTRU Prime Decapsulation in Hardware (si apre in una nuova finestra)

Autori: Adrian Marotzke, Georg Land, Jan Richter-Brockmann, Tim Güneysu
Pubblicato in: IACR Transactions on Cryptographic Hardware and Embedded Systems (CHES 2024), 2023, ISSN 2569-2925
Editore: International Association for Cryptologic Research
DOI: 10.46586/TCHES.V2024.I1.1-26

Optimising GPGPU Execution Through Runtime Micro-Architecture Parameter Analysis (si apre in una nuova finestra)

Autori: Giuseppe Maria Sarda, Nimish Shah, Debjyoti Bhattacharjee, Peter Debacker, Marian Verhelst
Pubblicato in: 2023 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION, IISWC; 2023, 2023, ISSN 2835-2238
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/IISWC59245.2023.00017

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions (si apre in una nuova finestra)

Autori: S Singh, J Feliu, ME Acacio, A Jimborean, A Ros
Pubblicato in: International Conference on Parallel Architectures and Compilation Techniques (PACT), 2023, ISBN 979-8-3503-4254-3
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/PACT58117.2023.00009

A Holistic Approach Towards Side-Channel Secure Fixed-Weight Polynomial Sampling (si apre in una nuova finestra)

Autori: Markus Krausz, Georg Land, Jan Richter-Brockmann, Tim Güneysu
Pubblicato in: PKC 2023: 26th IACR International Conference on Practice and Theory of Public-Key Cryptography, 2023, ISSN 0302-9743
Editore: Public-Key Cryptography
DOI: 10.1007/978-3-031-31371-4_4

Time-Predictable Deep Noise Suppression on an Edge Device (si apre in una nuova finestra)

Autori: Alessandro Cerioli, Tórur Biskopstø Strøm, Clément Laroche, Tobias Piechowiak, Luca Pezzarossa, Martin Schoeberl
Pubblicato in: 2025 28th International Symposium on Real-Time Distributed Computing (ISORC), 2025
Editore: IEEE
DOI: 10.1109/ISORC65339.2025.00062

Scalable Speech Enhancement With Dynamic Channel Pruning (si apre in una nuova finestra)

Autori: Riccardo Miccini, Clément Laroche, Tobias Piechowiak, Luca Pezzarossa
Pubblicato in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2025
Editore: IEEE
DOI: 10.1109/ICASSP49660.2025.10889876

Efficient Streaming Speech Quality Prediction with Spiking Neural Networks (si apre in una nuova finestra)

Autori: Mattias Nilsson, Riccardo Miccini, Julian Rossbroich, Clément Laroche, Tobias Piechowiak, Friedemann Zenke
Pubblicato in: Interspeech 2025, 2025
Editore: ISCA
DOI: 10.21437/INTERSPEECH.2025-2269

Resource-Efficient Speech Quality Prediction through Quantization Aware Training and Binary Activation Maps (si apre in una nuova finestra)

Autori: Mattias Nilsson, Riccardo Miccini, Clement Laroche, Tobias Piechowiak, Friedemann Zenke
Pubblicato in: Interspeech 2024, 2024
Editore: ISCA
DOI: 10.21437/Interspeech.2024-1979

Decoding Finger Velocity from Cortical Spike Trains with Recurrent Spiking Neural Networks (si apre in una nuova finestra)

Autori: Tengjun Liu, Julia Gygax, Julian Rossbroich, Yansong Chua, Shaomin Zhang, Friedemann Zenke
Pubblicato in: 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2024
Editore: IEEE
DOI: 10.1109/BIOCAS61083.2024.10798222

Free Bits: Latency Optimization of Mixed-Precision Quantized Neural Networks on the Edge (si apre in una nuova finestra)

Autori: Rutishauser, Georg; Conti, Francesco; Benini, Luca
Pubblicato in: 2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2023, ISSN 2834-9857
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/AICAS57966.2023.10168577

Adaptive Slimming for Scalable and Efficient Speech Enhancement (si apre in una nuova finestra)

Autori: Riccardo Miccini, Minje Kim, Clément Laroche, Luca Pezzarossa, Paris Smaragdis
Pubblicato in: 2025 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2025
Editore: IEEE
DOI: 10.1109/WASPAA66052.2025.11230950

Quantitative Fault Injection Analysis (si apre in una nuova finestra)

Autori: Jakob Feldtkeller, Tim Güneysu, Patrick Schaumont
Pubblicato in: Advances in Cryptology – ASIACRYPT 2023, 2023, ISSN 0302-9743
Editore: Springer, Singapore
DOI: 10.1007/978-981-99-8730-6_10

Combined Private Circuits - Combined Security Refurbished (si apre in una nuova finestra)

Autori: Jakob Feldtkeller, Tim Güneysu, Thorben Moos, Jan Richter-Brockmann, Sayandeep Saha, Pascal Sasdrich, François-Xavier Standaert
Pubblicato in: ACM Conference on Computer and Communications Security (CCS), 2023, ISSN 1543-7221
Editore: Association for Computing Machinery
DOI: 10.1145/3576915.3623129

Dynamic nsNET2: Efficient Deep Noise Suppression with Early Exiting (si apre in una nuova finestra)

Autori: Miccini, Riccardo; Zniber, Alaa; Laroche, Clément; Piechowiak, Tobias; Schoeberl, Martin; Pezzarossa, Luca; Karrakchou, Ouassim; Sparsø, Jens; Ghogho, Mounir
Pubblicato in: IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2023), 2023, ISSN 2161-0371
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/MLSP55844.2023.10285925

A Bespoke Design Approach to Low-Power Printed Microprocessors for Machine Learning Applications (si apre in una nuova finestra)

Autori: Panagiotis Chaidos, Giorgos Armeniakos, Sotirios Xydis, Dimitrios Soudris
Pubblicato in: 2025 IEEE International Symposium on Circuits and Systems (ISCAS), 2025
Editore: IEEE
DOI: 10.1109/ISCAS56072.2025.11044307

Data-driven HLS optimization for reconfigurable accelerators (si apre in una nuova finestra)

Autori: Aggelos Ferikoglou, Andreas Kakolyris, Vasilis Kypriotis, Dimosthenis Masouros, Dimitrios Soudris, Sotirios Xydis
Pubblicato in: Proceedings of the 61st ACM/IEEE Design Automation Conference, 2024
Editore: ACM
DOI: 10.1145/3649329.3658471

Alternate Path μ-op Cache Prefetching (si apre in una nuova finestra)

Autori: Sawan Singh, Arthur Perais, Alexandra Jimborean, Alberto Ros
Pubblicato in: 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), 2024
Editore: IEEE
DOI: 10.1109/ISCA59077.2024.00092

Falcon: A Scalable Analytical Cache Model (si apre in una nuova finestra)

Autori: Arjun Pitchanathan, Kunwar Grover, Tobias Grosser
Pubblicato in: Proceedings of the ACM on Programming Languages, Numero 8, 2024, ISSN 2475-1421
Editore: Association for Computing Machinery (ACM)
DOI: 10.1145/3656452

EFLOP: A Sparsity-Aware Metric for Evaluating Computational Cost in Spiking and Non-Spiking Neural Networks (si apre in una nuova finestra)

Autori: Simon Narduzzi, Friedemann Zenke, Shih-Chii Liu, Liza Andrea Dunbar
Pubblicato in: Neuromorphic Computing and Engineering, 2025, ISSN 2634-4386
Editore: IOP Publishing
DOI: 10.1088/2634-4386/ADDEE8

COAC: Cross-Layer Optimization of Accelerator Configurability for Efficient CNN Processing (si apre in una nuova finestra)

Autori: Steven Colleman; Man Shi; Marian Verhelst
Pubblicato in: IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, ISSN 1063-8210
Editore: Institute of Electrical and Electronics Engineers
DOI: 10.1109/TVLSI.2023.3268084

DREAM-CIM: A Digital SRAM-Based CIM Accelerator for Energy- and Area-Efficient Edge AI (si apre in una nuova finestra)

Autori: Asmae El Arrassi, Lucas Huijbregts, Manil Dev Gomony, Anteneh Gebregiorgis, Francky Catthoor, Mottaqiallah Taouil, Rajiv Joshi, Said Hamdioui
Pubblicato in: IEEE Transactions on Circuits and Systems for Artificial Intelligence, Numero 2, 2025, ISSN 2996-6647
Editore: Institute of Electrical and Electronics Engineers (IEEE)
DOI: 10.1109/TCASAI.2025.3579709

Reliable and Energy-Efficient Diabetic Retinopathy Screening Using Memristor-Based Neural Networks (si apre in una nuova finestra)

Autori: Sumit Diware, Koteswararao Chilakala, Rajiv V. Joshi, Said Hamdioui, Rajendra Bishnoi
Pubblicato in: IEEE Access, Numero Volume 12, 2024, ISSN 2169-3536
Editore: IEEE
DOI: 10.1109/ACCESS.2024.3383014

Synthetic data generation techniques for training deep acoustic siren identification networks (si apre in una nuova finestra)

Autori: Stefano Damiano; Benjamin Cramer;Andre Guntoro; Toon van Waterschoot
Pubblicato in: Frontiers in Signal Processing, Numero Volume 4 - 2024, 2024, ISSN 2673-8198
Editore: Frontiers
DOI: 10.3389/frsip.2024.1358532

Stream: Design Space Exploration of Layer-Fused DNNs on Heterogeneous Dataflow Accelerators (si apre in una nuova finestra)

Autori: Arne Symons, Linyan Mei, Steven Colleman, Pouya Houshmand, Sebastian Karl, Marian Verhelst
Pubblicato in: IEEE Transactions on Computers, Numero 74, 2025, ISSN 0018-9340
Editore: Institute of Electrical and Electronics Engineers (IEEE)
DOI: 10.1109/TC.2024.3477938

Dynamic Early Exiting Predictive Coding Neural Networks (si apre in una nuova finestra)

Autori: Alaa Zniber, Ouassim Karrakchou, Mounir Ghogho
Pubblicato in: 2024
Editore: open source
DOI: 10.48550/arXiv.2309.02022

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile

Il mio fascicolo 0 0